Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-03T19:52:46.847Z Has data issue: false hasContentIssue false

Problèmes D'effectivité sur les Quartiques de Fermat

Published online by Cambridge University Press:  17 April 2009

Élie Cali
Affiliation:
App. 231, 9 rue de Sèvres, 92100 Boulogne, France, e-mail: [email protected]
Alain Kraus
Affiliation:
Université Pierre et Marie Curie - Paris 6, Institut de Mathématiques, UMR 7586 du CNRS, 175 rue du Chevaleret, 75013 Paris, France, e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let K be a number field. An element bK* being given, let Cb be the curve defined over K by the equation x4 + y4 = bz4. Let Cb(K) be the set of the K-rational points of Cb. This paper uses Dem'janenko and Manin type methods to obtain effective criteria for Cb(K) to be empty.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2007

References

[1]Cremona, J.E., Prickett, M. et Siksek, S., ‘Height difference bounds for elliptic curves over number fields’, J. Number Theory 116 (2006), 4268.CrossRefGoogle Scholar
[2]Dem'janenko, V.A., ‘The Indeterminate Equations x 6 + y 6 = az 2, x 6 + y 6 = az 3, x 4 + y 4 = az 4’, Amer. Math. Soc. Transl. 119 (1983), 2734.Google Scholar
[3]Grigorov, G. et Rizov, J., ‘Heights on elliptic curves and the diophantine equation x 4 + y 4 = cz 4’, (preprint), Sophia University (1998).Google Scholar
[4]Kraus, A., ‘Quelques remarques à propos des invariants c 4, c 6 et ▵ d'une courbe elliptique’, Acta Arith. 54 (1989), 7580.CrossRefGoogle Scholar
[5]Siksek, S., ‘Infinite descent on elliptic curves’, Rocky Mountain J. Math. 25 (1995), 15011538.CrossRefGoogle Scholar
[6]Silverman, J.H., ‘Lower bounds for height functions’, Duke Math. J. 51 (1984), 395403.CrossRefGoogle Scholar
[7]Silverman, J.H., The arithmetic of elliptic curves, Graduate Texts in Mathematics 106 (Springer-Verlag, New York, 1986).CrossRefGoogle Scholar
[8]Silverman, J.H., Rational points on certain families of curves of genus at least 2, Proc. London Math. Soc. 55 (1987), 465481.CrossRefGoogle Scholar
[9]Simon, D., ‘Programme de calcul du rang des courbes elliptiques dans les corps de nombres, disponible à l'adresse’, http://www.math.unicaen.fr/-simon/.Google Scholar
[10]Tate, J., ‘Algorithm for determining the type of a singular fiber in an elliptic pencil, dans Modular Functions of One Variable IV’, Lecture Notes in Math. 476 (1975), 3352.CrossRefGoogle Scholar