Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-03T18:43:45.645Z Has data issue: false hasContentIssue false

The predual of the space of convolutors on a locally compact group

Published online by Cambridge University Press:  17 April 2009

Michael Cowling
Affiliation:
School of MathematicsUniversity of New South Wales, Sydney NSW 2052Australia, e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let Cvp(G) be the space of convolution operators on the Lebesgue space LP(G), for an arbitrary locally compact group G. We describe Cvp(G) as a dual space, whose predual, is a Banach algebra of functions on G, under pointwise operations, with maximal ideal space G. This involves a variation of Herz's definition of AP(G); the benefit of this new definition is that all of Cvp(G) is obtained as the dual in the nonamenable setting. We also discuss further developments of this idea.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1998

References

[1]Cowling, M., ‘La synthèse des convoluteurs de Lp de certains groupes pas moyennables’, Boll. Un. Mat. Ital. A 14 (1977), 551555.Google Scholar
[2]Cowling, M., ‘Some applications of Grothendieck's theory of topological tensor products in harmonic analysis’, Math. Ann. 232 (1978), 273285.CrossRefGoogle Scholar
[3]Cowling, M., ‘Rigidity for lattices in semisimple Lie groups: von Neumann algebras and ergodic actions’, Rend. Sem. Mat. Univ. Politec. Torino 47 (1989), 137.Google Scholar
[4]Cowling, M. and Haagerup, U., ‘Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one’, Invent. Math. 96 (1989), 507549.CrossRefGoogle Scholar
[5]Delaporte, J. and Derighetti, A., ‘p-pseudomeasures and closed subgroups’, Monatsh. Math. 119 (1995), 3747.CrossRefGoogle Scholar
[6]Eymard, P., Algèbres Ap et convoluteurs de LP, Lecture Notes in Math. 180, (Sém. Bourbaki 1969–1970 367) (Springer-Verlag, Berlin, Heidelberg, New York, 1970).Google Scholar
[7]Feichtinger, H.G., ‘Un espace de Banach de distributions temperées sur les groupes localement compacts abeliens’, C.R. Acad. Sci. Paris Sér. A 290 (1980), 791794.Google Scholar
[8]Figà-Talamanca, A., ‘Translation invariant operators in Lp’, Duke Math. J. 32 (1965), 495501.CrossRefGoogle Scholar
[9]Figà-Talamanca, A.Density and representation theorems for multipliers of type (p, q)J. Austral. Math. Soc. 7 (1967), 16.CrossRefGoogle Scholar
[10]Haagerup, U. and Kraus, J., ‘Approximation properties for group C* -algebras and group von Neumann algebras’, Trans. Amer. Math. Soc. 344 (1994), 667699.Google Scholar
[11]Herz, C.S., ‘Remarques sur la Note précédente de M. Varopoulos’, C.R. Acad. Sci. Paris Sér. A 260 (1965), 60016004.Google Scholar