Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T02:17:03.450Z Has data issue: false hasContentIssue false

POLYHEDRAL MODELS AND GEOMETRIC STRUCTURES FOR NANOTUBES

Published online by Cambridge University Press:  22 March 2011

RICHARD K. F. LEE*
Affiliation:
Nanomechanics Group, School of Mathematical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia (email: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2011

References

[1]Cox, B. J. and Hill, J. M., ‘Exact and approximate geometric parameters for carbon nanotubes incorporating curvature’, Carbon 45 (2007), 14531462.CrossRefGoogle Scholar
[2]Cox, B. J. and Hill, J. M., ‘Geometric structure of ultra-small carbon nanotubes’, Carbon 46 (2008), 711713.CrossRefGoogle Scholar
[3]Cox, B. J. and Hill, J. M., ‘Geometric model for boron nitride nanotubes incorporating curvature’, J. Phys. Chem. C 112 (2008), 16 24816 255.CrossRefGoogle Scholar
[4]Dresselhaus, M. S., Dresselhaus, G. and Saito, R., ‘Carbon fibers based on C60 and their symmetry’, Phys. Rev. B 45 (1992), 62346242.CrossRefGoogle ScholarPubMed
[5]Dresselhaus, M. S., Dresselhaus, G. and Saito, R., ‘Physics of carbon nanotubes’, Carbon 33 (1995), 883891.CrossRefGoogle Scholar
[6]Jishi, R. A., Dresselhaus, M. S. and Dresselhaus, G., ‘Symmetry properties of chiral carbon nanotubes’, Phys. Rev. B 47 (1993), 16 67116 674.CrossRefGoogle ScholarPubMed
[7]Lee, R. K. F., Cox, B. J. and Hill, J. M., ‘Idealized polyhedral model and geometric structure for silicon nanotubes’, J. Phys.: Condens. Matter 21 (2009), 075301.Google ScholarPubMed
[8]Lee, R. K. F., Cox, B. J. and Hill, J. M., ‘Exact polyhedral model for boron nanotubes’, J. Phys. A: Math. Theor. 42 (2009), 065204.CrossRefGoogle Scholar
[9]Lee, R. K. F., Cox, B. J. and Hill, J. M., ‘Ideal polyhedral model for boron nanotubes with distinct bond lengths’, J. Phys. Chem. C 113 (2009), 19 79419 805.CrossRefGoogle Scholar
[10]Lee, R. K. F., Cox, B. J. and Hill, J. M., ‘General rolled-up and polyhedral models for carbon nanotubes’, Fullerenes, Nanotubes and Carbon Nanostructures (2010), accepted for publication.CrossRefGoogle Scholar
[11]Lee, R. K. F., Cox, B. J. and Hill, J. M., ‘Silicon nanotubes with distinct bond lengths’, J. Math. Chem. 47 (2010), 569589.CrossRefGoogle Scholar
[12]Lee, R. K. F., Cox, B. J. and Hill, J. M., ‘The geometric structure of single-walled nanotubes’, Nanoscale 2 (2010), 859872.CrossRefGoogle ScholarPubMed