Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T06:05:43.730Z Has data issue: false hasContentIssue false

Poincaré inequality for abstract spaces

Published online by Cambridge University Press:  17 April 2009

Alireza Ranjbar-Motlagh
Affiliation:
Department of Mathematical Sciences, Sharif University of Technology, P.O. Box 11365-9415, Tehran, Iran, e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Poincaré inequality is generalised to metric-measure spaces which support a strong version of the doubling condition. This generalises the Poincaré inequality for manifolds whose Ricci curvature is bounded from below and metric-measure spaces which satisfy the measure contraction property.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2005

References

[1]Aubin, J.P. and Cellina, A., Differential inclusions, Die Grundlehren der mathematischen Wissenschaften 264 (Springer-Verlag, New York, 1984).CrossRefGoogle Scholar
[2]Bourdon, M. and Pajot, H., ‘Poincaré inequalities and quasiconformal structure on the boundary of some hyperbolic buildings’, Proc. Amer. Math. Soc. 127 (1999), 23152324.CrossRefGoogle Scholar
[3]Buser, P., ‘A note on the isoperimetric constant’, Ann. Sci. École Nor. Sup. 15 (1982), 213230.CrossRefGoogle Scholar
[4]Chavel, I., Riemannian geometry - A modern introduction (Cambridge Univ. Press, Cambridge, 1993).Google Scholar
[5]Cheeger, J., ‘Differentiability of Lipschitz functions on metric measure spaces’, Geom. Funct. Anal. 9 (1999), 428517.CrossRefGoogle Scholar
[6]Coifman, R. and Weiss, G., ‘Extensions of Hardy spaces and their use in analysis’, Bull. Amer. Math. Soc. 83 (1977), 569645.CrossRefGoogle Scholar
[7]Evans, L.C. and Gariepy, R.F., Measure theory and fine properties of functions, Studies in Adv. Math. (CRC Press, Boca Raton, Florida, 1992).Google Scholar
[8]Garofalo, N. and Nhieu, D.-M., ‘Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and existence of minimal surfaces’, Comm. Pure Appl. Math. 49 (1996), 10811144.3.0.CO;2-A>CrossRefGoogle Scholar
[9]Hanson, B. and Heinonen, J., ‘An n-dimensional space that admits a Poincaré inequality but has no manifold points’, Proc. Amer. Math. Soc. 128 (2000), 33793390.CrossRefGoogle Scholar
[10]Hajlasz, P. and Koskela, P., ‘Sobolev meets Poincaré’, C. R. Acad. Sci. Paris Ser. I Math. 320 (1995), 12111215.Google Scholar
[11]Hajlasz, P. and Koskela, P., ‘Sobolev Met Poincaré’, Mem. Amer. Math. Soc. 145 (2000).Google Scholar
[12]Heinonen, J., Lectures on analysis on metric spaces (Springer-Verlag, New York, 2001).CrossRefGoogle Scholar
[13]Heinonen, J. and Koskela, P., ‘Quasiconformal maps in metric spces with controlled geometry’, Acta Math. 181 (1998), 161.CrossRefGoogle Scholar
[14]Korevaar, N. and Schoen, R., ‘Global existence theorems for harmonic maps to non-locally compact spaces’, Comm. Anal. Geom. 5 (1997), 333387.CrossRefGoogle Scholar
[15]Kuwae, K. and Shioya, T., ‘On generalized measure contraction property and energy functionals over Lipschitz maps’, Potential Anal. 15 (2001), 105121.CrossRefGoogle Scholar
[16]Kuwae, K. and Shioya, T., ‘Sobolev and Dirichlet spaces over maps between spaces’, (preprint).Google Scholar
[17]Laakso, T.J., ‘Ahlfors Q-regular spaces with arbitrary Q > 1 admitting weak Poincaré inequality’, Geom. Funct. Anal. 10 (2000), 111123. With erratum, Geom. Funct. Anal. 12 650 (2002).CrossRefGoogle Scholar
[18]Lanconelli, E. and Morbidelli, D., ‘On the Poincaré inequality for vector fields’, Ark. Mat. 38 (2000), 327342.CrossRefGoogle Scholar
[19]Li, P., Lecture notes on geometric analysis, Lecture Notes Series 6 (Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1993).Google Scholar
[20]Ranjbar-Motlagh, A., Analysis on metric-measure spaces, (Ph. D. Thesis) (New York University, New York, 1998).Google Scholar
[21]Ranjbar-Motlagh, A., ‘A note on the Poincaré inequality’, Studia Math. 154 (2003), 111.CrossRefGoogle Scholar
[22]Rudin, W., Real and complex analysis, (3rd edition) (McGraw-Hill Book Co., 1987).Google Scholar
[23]Saloff-Coste, L., Aspects of Sobolev-type inequalities, LMS Lecture Note Series 289 (Cambridge Univ. Press, Cambridge, 2002).Google Scholar
[24]Semmes, S., ‘Finding curves on general spaces through quantative topology, with applications to Sobolev and Poincaré inequalities’, Selecta Math. 2 (1996), 155295.CrossRefGoogle Scholar
[25]Sturm, K.T., ‘Diffusion processes and heat kernels on metric spaces’, Ann. Probab. 26 (1998), 155.CrossRefGoogle Scholar
[26]Varopoulos, N.T., Saloff-Coste, L. and Coulhon, T., Analysis and geometry on groups (Cambridge Univ. Press, Cambridge, 1992).Google Scholar