No CrossRef data available.
Article contents
Poincaré duality pairs of dimensiond three
Published online by Cambridge University Press: 17 April 2009
Abstract
An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
- Type
- Abstracts of Australasian Ph.D. Theses
- Information
- Bulletin of the Australian Mathematical Society , Volume 72 , Issue 2 , October 2005 , pp. 331 - 334
- Copyright
- Copyright © Australian Mathematical Society 2005
References
[1]Browder, W., Surgery on simply connected manifolds (Springer-Verlag, Berlin, Heidelberg, New York, 1972).CrossRefGoogle Scholar
[2]Crisp, J., ‘The decomposition of 3-dimensional Poincaré complexes’, Comment. Math. Helv. 75 (2000), 232–246.CrossRefGoogle Scholar
[3]Eckmann, B. and Linnell, P., ‘Poincaré duality groups of dimension two, II’, Comment. Math. Helv. 58 (1983), 111–114.CrossRefGoogle Scholar
[4]Eckmann, B. and Müller, H., ‘Poincaré duality groups of dimension two’, Comment. Math. Helv. 55 (1980), 510–520.CrossRefGoogle Scholar
[5]Gitler, S. and Stasheff, J.D., ‘The first exotic class of BF’, Topology 4 (1965), 257–266.CrossRefGoogle Scholar
[6]Hendriks, H., ‘Obstruction theory in 3-dimensional topology: An extension theorem’, J. London Math. Soc. (2) 16 (1977), 160–164.CrossRefGoogle Scholar
[7]Hillman, J.A., ‘On 3-dimensional Poincaré duality complexes and 2- knot groups’, Math. Proc. Camb. Phil. Soc. 114 (1993), 215–218.CrossRefGoogle Scholar
[8]Hillman, J.A., ‘An indecomposable PD 3-complex whose fundamental group has infinitely many ends’, Math. Proc. Camb. Phil. Soc 138 (2005), 55–57.CrossRefGoogle Scholar
[9]Hilton, P.J., Homotopy theory and duality (Gordon and Breach, New York, London, Paris, 1965).Google Scholar
[10]Kirby, R.C. and Siebenmann, L.C., Foundational essays on topological manifolds, smoothings and triangulations, Annals of Mathematics Studies 88 (Princeton University Press, Princeton, N.J., 1977).CrossRefGoogle Scholar
[11]Swan, R.G., ‘Periodic resolutions for finite groups’, Ann. of Math. 72 (1960), 267–291.CrossRefGoogle Scholar
[12]Turaev, V.G., ‘Three dimensional Poincaré complexes: Homotopy classification and splitting’, Math. Sb. 180 (1989), 809–830.Google Scholar
[13]Wall, C.T.C., ‘Poincaré complexes: I’, Ann. of Math. (2) 86 (1967), 213–245.CrossRefGoogle Scholar
[14]Wall, C.T.C., Surgery on compact manifolds (Academic Press, London, New York, 1970).Google Scholar
You have
Access