Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-17T14:53:04.070Z Has data issue: false hasContentIssue false

Periodic points and chaos for expanding maps of the interval

Published online by Cambridge University Press:  17 April 2009

Bill Byers
Affiliation:
Department of Mathematics, Concordia University, Montreal, Quebec, Canada H4B IR6.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Expanding maps of the interval with unique turning points have periodic points of period 2n · 3 for some n and therefore are chaotic.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1981

References

[1]Butler, G.J. and Pianigiani, G., “Periodic points and chaotic functions in the unit interval”, Bull. Austral. Math. Soc. 18 (1978), 255265.CrossRefGoogle Scholar
[2]Fuglister, Frederick J., “A note on chaos”, J. Combin. Theory Ser. A 26 (1979), 186188.CrossRefGoogle Scholar
[3]Guckenheimer, J., Oster, G. and Ipaktchi, A., “The dynamics of density-dependent population models”, J. Math. Biol. 4 (1977), 101147.CrossRefGoogle ScholarPubMed
[4]Якобсок, М.В. [M.V. Jakobson], “ Топологическне и метрическне свойства одномеркых зндоморѻизмов”, [Topological and metric properties of one-dimensional endomorphisms], Dokl. Akad. Nauk SSSR 243 (1978), 866869. English Transl: Soviet Math. Dokl. 19 (1978), 1452–1456.Google ScholarPubMed
[5]Kaplan, James L. and Marotto, Frederick R., “Chaotic behaviour in dynamical systems”, Nonlinear systems and applications, 199210 (Proc. Internat. Conf. on Nonlinear Systems and Applications, University of Texas, Arlington, July 1976. Academic Press [Harcourt Brace Jovanovich], New York, San Francisco, London, 1977).CrossRefGoogle Scholar
[6]Kloeden, Peter E., “Chaotic difference equations are dense”, Bull. Austral. Math. Soc. 15 (1976), 371379.CrossRefGoogle Scholar
[7]Li, Tien-Yien and Yorke, James A., “Period three implies chaos”, Amer. Math. Monthly 82 (1975), 985992.CrossRefGoogle Scholar
[8]Lasota, A. and Yorke, James A., “On the existence of invariant measures for piecewise monotonic transformations”, Trans. Amer. Math. Soc. 186 (1973), 481488.CrossRefGoogle Scholar
[9]Nathanson, Melvyn B., “Permutations, periodicity, and chaos”, J. Combin. Theory Ser. A 22 (1977), 6168.CrossRefGoogle Scholar
[10]Шаркобсксй, А.Н. [A.N. Sharkovsky], “Сосуществование циклов непрерывного преобразования прямой в себя”, [Co-existence of the cycles of a continuous mapping of the line into itself], Ukrain. Math. Ž. 16 (1961), 6171.Google ScholarPubMed