Article contents
PERIODIC 2-GRAPHS ARISING FROM SUBSHIFTS
Published online by Cambridge University Press: 23 March 2010
Abstract
Higher-rank graphs were introduced by Kumjian and Pask to provide models for higher-rank Cuntz–Krieger algebras. In a previous paper, we constructed 2-graphs whose path spaces are rank-two subshifts of finite type, and showed that this construction yields aperiodic 2-graphs whoseC*-algebras are simple and are not ordinary graph algebras. Here we show that the construction also gives a family of periodic 2-graphs which we call domino graphs. We investigate the combinatorial structure of domino graphs, finding interesting points of contact with the existing combinatorial literature, and prove a structure theorem for the C*-algebras of domino graphs.
MSC classification
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Publishing Association Inc. 2010
Footnotes
This research was supported by the Australian Research Council, and Natasha Weaver was supported by an Australian Postgraduate Award.
References
- 3
- Cited by