Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-18T16:00:52.660Z Has data issue: false hasContentIssue false

On zeta functions associated with polynomials

Published online by Cambridge University Press:  17 April 2009

Andrzej Dąbrowski
Affiliation:
University of Szczecin, Institute of Mathematics, ul. Wielkopolska 15, 70-451 Szczecin, Poland, e-mail: [email protected]. szczecin.pl
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We give direct proofs of meromorphic continuality on the whole complex plane of certain zeta functions ZP, Q (s) and Z (P/Q, s) associated with a pair of polynomials P, Q. We calculate ZP, Q (−q) (q a non-negative integer) and give explicit formulas for the residues of Z (P/Q, s) at poles.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2000

References

REFERENCES

[1]Carletti, E. and Bragadin, G. Monti, ‘On Dirichlet series associated with polynomials, Proc. Amer. Math. Soc. 121 (1994), 3337.CrossRefGoogle Scholar
[2]Eie, M., ‘On a Dirichlet series associated with a polynomial, Proc. Amer. Math. Soc. 110 (1990), 583590.CrossRefGoogle Scholar
[3]Müller, H., ‘On generalized zeta-functions at negative integers, Illinois J. Math. 32 (1988), 222229.CrossRefGoogle Scholar
[4]Sargos, P., ‘Prolongement méromorphe des séries de Dirichlet associées à des fractions rationnelles de plusieurs variables, Ann. Inst. Fourier 34 (1984), 83123.CrossRefGoogle Scholar