Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-27T01:17:09.406Z Has data issue: false hasContentIssue false

ON VERBAL SUBGROUPS IN RESIDUALLY FINITE GROUPS

Published online by Cambridge University Press:  10 June 2011

JHONE CALDEIRA
Affiliation:
Instituto de Matemática e Estatística, Universidade Federal de Goiás, Goiânia-GO, CP 131, 74001-970, Brazil (email: [email protected])
PAVEL SHUMYATSKY*
Affiliation:
Department of Mathematics, University of Brasilia, Brasilia-DF, 70910-900, Brazil (email: [email protected])
*
For correspondence; e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The following theorem is proved. Let m, k and n be positive integers. There exists a number η=η(m,k,n) depending only on m, k and n such that if G is any residually finite group satisfying the condition that the product of any η commutators of the form [xm,y1,…,yk ] is of order dividing n, then the verbal subgroup of G corresponding to the word w=[xm,y1,…,yk ] is locally finite.

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2011

Footnotes

Supported by Capes and CNPq-Brazil.

References

[1]Adian, S. I., ‘On groups with periodic commutators’, Dokl. Math. 62 (2000), 174176.Google Scholar
[2]Aleshin, S. V., ‘Finite automata and the Burnside problem for periodic groups’, Math. Notes 11 (1972), 199203.Google Scholar
[3]Brazil, S., Krasilnikov, A. and Shumyatsky, P., ‘Groups with bounded verbal conjugacy classes’, J. Group Theory 9 (2006), 127137.CrossRefGoogle Scholar
[4]Deryabina, G. S. and Kozhevnikov, P. A., ‘The derived subgroup of a group with commutators of bounded order can be nonperiodic’, Comm. Algebra 27(9) (1999), 45254530.Google Scholar
[5]Dixon, J. D., du Sautoy, M. P. F., Mann, A. and Segal, D., Analytic Pro-p Groups (Cambridge University Press, Cambridge, 1991).Google Scholar
[6]Flavell, P., Guest, S. and Guralnick, R., ‘Characterizations of the solvable radical’, Proc. Amer. Math. Soc. 138 (2010), 11611170.Google Scholar
[7]Golod, E. S., ‘On nil-algebras and residually finite groups’, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 273276.Google Scholar
[8]Grigorchuk, R. I., ‘On the Burnside problem for periodic groups’, Funct. Anal. Appl. 14 (1980), 5354.Google Scholar
[9]Gupta, N. and Sidki, S., ‘On the Burnside problem for periodic groups’, Math. Z. 182 (1983), 385386.CrossRefGoogle Scholar
[10]Hall, M., The Theory of Groups (Macmillan, New York, 1959).Google Scholar
[11]Hall, P. and Higman, G., ‘The p-length of a p-soluble group and reduction theorems for Burnside’s problem’, Proc. Lond. Math. Soc. 6(3) (1956), 142.Google Scholar
[12]Huppert, B., Endliche Gruppen I (Springer, Berlin, 1967).CrossRefGoogle Scholar
[13]Huppert, B. and Blackburn, N., Finite Groups II (Springer, Berlin, 1982).Google Scholar
[14]Ivanov, S., ‘On groups with periodic products of commutators’, in: Topological and Asymptotic Aspects of Group Theory, Contemporary Mathematics, 394 (American Mathematical Society, Providence, RI, 2006), pp. 143147.Google Scholar
[15]Jones, G. A., ‘Varieties and simple groups’, J. Aust. Math. Soc. 17 (1974), 163173.CrossRefGoogle Scholar
[16]Khukhro, E. I. and Shumyatsky, P., ‘Bounding the exponent of a finite group with automorphisms’, J. Algebra 212 (1999), 363374.Google Scholar
[17]Lazard, M., ‘Sur les groupes nilpotents et les anneaux de Lie’, Ann. Sci. Éc. Norm. Supér. 71 (1954), 101190.Google Scholar
[18]Mann, A., ‘The exponents of central factor and commutator groups’, J. Group Theory 10(4) (2007), 435436.Google Scholar
[19]Nikolov, N. and Segal, D., ‘On finitely generated profinite groups. I: Strong completeness and uniform bounds’, Ann. of Math. (2) 165(2) (2007), 171238.CrossRefGoogle Scholar
[20]Segal, D., ‘Closed subgroups of profinite groups’, Proc. Lond. Math. Soc. 81(3) (2000), 2954.CrossRefGoogle Scholar
[21]Shumyatsky, P., Multilinear commutators in residually finite groups, Israel J. Math., to appear, http://arxiv.org/abs/1012.2840.Google Scholar
[22]Shumyatsky, P., ‘On groups with commutators of bounded order’, Proc. Amer. Math. Soc. 127 (1999), 25832586.Google Scholar
[23]Shumyatsky, P., ‘Applications of Lie ring methods to group theory’, in: Nonassociative Algebra and its Applications (eds. Costa, R., Grishkov, A., Guzzo, H. Jr and Peresi, L. A.) (Marcel Dekker, New York, 2000), pp. 373395.Google Scholar
[24]Shumyatsky, P., ‘Verbal subgroups in residually finite groups’, Q. J. Math. (Oxford) 51 (2000), 523528.Google Scholar
[25]Shumyatsky, P., ‘Engel values in residually finite groups’, Monatsh. Math. 152 (2007), 169175.Google Scholar
[26]Shumyatsky, P., ‘Commutators in residually finite groups’, Israel J. Math. 182(1) (2011), 149156.Google Scholar
[27]Shumyatsky, P. and Silva, J. C., ‘Engel words and the restricted Burnside problem’, Monatsh. Math. 159(4) (2010), 397405.CrossRefGoogle Scholar
[28]Sushchansky, V. I., ‘Periodic p-elements of permutations and the general Burnside problem’, Dokl. Akad. Nauk SSSR 247 (1979), 447461.Google Scholar
[29]Wilson, J. S. and Zelmanov, E., ‘Identities for Lie algebras of pro-p groups’, J. Pure. Appl. Algebra 81 (1992), 103109.CrossRefGoogle Scholar
[30]Zelmanov, E., ‘The solution of the restricted Burnside problem for groups of odd exponent’, Math. USSR Izv. 36 (1991), 4160.CrossRefGoogle Scholar
[31]Zelmanov, E., ‘The solution of the restricted Burnside problem for 2-groups’, Math. Sb. 182 (1991), 568592.Google Scholar
[32]Zelmanov, E., Nil Rings and Periodic Groups, Lecture Notes in Mathematics (Korean Math. Soc., Seoul, 1992).Google Scholar
[33]Zelmanov, E., ‘Lie ring methods in the theory of nilpotent groups’, in: Proceedings of Groups ’93, St. Andrews, London Mathematical Society Lecture Note Series, 212 (eds. Campbell, C. M.et al.) (Cambridge University Press, Cambridge, 1995), pp. 567585.Google Scholar