Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-22T22:28:50.390Z Has data issue: false hasContentIssue false

ON THE TRANSCENDENCE OF CERTAIN REAL NUMBERS

Published online by Cambridge University Press:  20 February 2019

VEEKESH KUMAR
Affiliation:
Harish-Chandra Research Institute, HBNI, Chhatnag Road, Jhunsi, Allahabad – 211019, India email [email protected]
BILL MANCE*
Affiliation:
Uniwersytet im. Adama Mickiewicza w Poznaniu, Collegium Mathematicum, ul. Umultowska 87, 61-614 Poznań, Poland email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this article, we prove the transcendence of certain infinite sums and products by applying the subspace theorem. In particular, we extend the results of Hančl and Rucki [‘The transcendence of certain infinite series’, Rocky Mountain J. Math.35 (2005), 531–537].

Type
Research Article
Copyright
© 2019 Australian Mathematical Publishing Association Inc. 

Footnotes

The first author was supported by a research grant from the Department of Atomic Energy, Government of India.

References

Adamczewski, B., Bugeaud, Y. and Luca, F., ‘Sur la complexité des nombres algébriques’, C. R. Math. Acad. Sci. Paris 339(1) (2004), 1114.Google Scholar
Adhikari, S. D., Saradha, N., Shorey, T. N. and Tijdeman, R., ‘Transcendental infinite sums’, Indag. Math. (N.S.) 12 (2001), 114.Google Scholar
Erdős, P. and Straus, E. G., ‘On the irrationality of certain series’, Pacific J. Math. 55 (1974), 8592.Google Scholar
Hančl, J., ‘Two criteria for transcendental sequences’, Le Matematiche 56 (2001), 149160.Google Scholar
Hančl, J., ‘A criterion for linear independence of series’, Rocky Mountain J. Math. 34 (2004), 173186.Google Scholar
Hančl, J., Kolouch, O. and Novotný, L., ‘A criterion for linear independence of infinite products’, An. Ştiinţ. Univ. “Ovidius” Constanta Ser. Mat. 32 (2015), 107120.Google Scholar
Hančl, J. and Rucki, P., ‘The transcendence of certain infinite series’, Rocky Mountain J. Math. 35 (2005), 531537.Google Scholar
Nishioka, K., Mahler Functions and Transcendence, Lecture Notes in Mathematics, 1631 (Springer, New York, 1996).Google Scholar
Nyblom, M. A., ‘A theorem on transcendence of infinite series’, Rocky Mountain J. Math. 30 (2001), 11111120.Google Scholar
Nyblom, M. A., ‘A theorem on transcendence of infinite series II’, J. Number Theory 91 (2001), 7180.Google Scholar
Schmidt, W. M., Diophantine Approximations and Diophantine Equations, Lecture Notes in Mathematics, 1467 (Springer, Berlin, 1991).Google Scholar