Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-16T19:18:54.476Z Has data issue: false hasContentIssue false

On the superpostition of functions in carleman classes

Published online by Cambridge University Press:  17 April 2009

Mostefa Ider
Affiliation:
Département de mathématiques et d'informatiqueUniversité de SherbrookeSherbrooke QuébecCanada J1K 2R1
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we deal with classes of infinitely differentiable functions known in the literature as Carleman classes. Our main result is a characterisation of those Carleman classes that are closed under superposition. This result enables us to give a complete solution to a problem that has been considered by Gevrey, Cartan and Bang.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1989

References

[1] Bang, T., On quasi-analytisk funktioner (Nyt Norclisk Forlag, Copenhagen, 1946).Google Scholar
[2] Cartan, H., Sur les classes de fonctions définies par des inégalités sur leurs dérivées successives (Actualités Scientifiques et industrielles numéro 897, 1940).Google Scholar
[3] Gevrey, M., Oeuvres complètes (Editions du Centre National de Ia recherche scientifique, Paris, 1970).Google Scholar
[4] Malliavin, P., ‘Calcul symbolique et sous algèbres de L1(G)’, Bull. Soc. Math. France 87 (1959), 181190.Google Scholar
[5] Mandelbrojt, S., Series adhérentes, régularisation des suites, applications (Gauthier-Villars, Paris, 1952).Google Scholar
[6] Rudin, W., ‘Division in algebras of infinitely differentiable functions’, J. Math. Mech 11 (1962), 797809.Google Scholar
[7] Siddiqi, J.A. and Ider, M., ‘Symbolic Calculus in analytic Carleman classes’, Proc. Amer. Math. Soc. 99 (1987), 347350.CrossRefGoogle Scholar