Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-10T22:50:34.666Z Has data issue: false hasContentIssue false

On the signature of generalised Seifert fibrations

Published online by Cambridge University Press:  17 April 2009

Peter Y. Pang
Affiliation:
Department of Mathematics, National University of Singapore, Kent Ridge 0511, Republic of Singapore
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this note, we prove a signature product formula for generalised Seifert fibrations. We also discuss how this result can be viewed using the theory of minimal models.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1993

References

[1]Chern, S.S., Hirzebruch, F. and Serre, J.P., ‘On the index of a fibered manifold’, Proc. Amer. Math. Soc. 8 (1957), 587596.CrossRefGoogle Scholar
[2]Epstein, D., ‘Foliations with all leaves compact’, Ann. Inst. Fourier, Grenoble 26 (1976), 265282.CrossRefGoogle Scholar
[3]Ghys, E., ‘Feuilletages riemanniens sur les variétés simplement connexes’, Ann. Inst. Fourier, Grenoble 34.4 (1984), 203223.CrossRefGoogle Scholar
[4]Greub, W., Halperin, S. and Vanstone, R., Connections, curvature and cohomology Vol 2 (Academic Press, New York, 1973).Google Scholar
[5]Grivel, P., ‘Formes différentielles et suites spectrales’, Ann. Inst. Fourier, Grenoble 29.3 (1979), 1737.CrossRefGoogle Scholar
[6]Haefliger, A., ‘Groupoïdes d'holonomie et classifiants’, Astérisque 116 (1984), 7097.Google Scholar
[7]Halperin, S., ‘Lectures on minimal models’, Publ. Internes de I'UER de Math Pures et Appl., Univ. de Lille I 111 (1977).Google Scholar
[8]Kamber, F. and Tondeur, P., ‘Foliations and metrics’, Proc. Special Year in Geometry, Maryland (1981–82), in Prog, in Math. 32 (Birkhäuser, Boston, 1983), pp. 103152.Google Scholar
[9]Lehmann, D., ‘Modèle minimal relatif des feuilletages’, in Lect. Notes in Math. 1183 (Springer, Berlin, Heidelberg, New York, 1986), pp. 250258.Google Scholar