Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-20T09:26:36.210Z Has data issue: false hasContentIssue false

ON THE PRIMES IN FLOOR FUNCTION SETS

Published online by Cambridge University Press:  23 November 2022

RONG MA
Affiliation:
School of Mathematics and Statistics, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, PR China e-mail: [email protected]
JIE WU*
Affiliation:
CNRS UMR 8050, Laboratoire d’Analyse et de Mathématiques Appliquées, Université Paris-Est Créteil, 94010 Créteil cedex, France
Rights & Permissions [Opens in a new window]

Abstract

Let $[t]$ be the integral part of the real number t and let $\mathbb {1}_{{\mathbb P}}$ be the characteristic function of the primes. Denote by $\pi _{\mathcal {S}}(x)$ the number of primes in the floor function set $\mathcal {S}(x) := \{[{x}/{n}] : 1\leqslant n\leqslant x\}$ and by $S_{\mathbb {1}_{{\mathbb P}}}(x)$ the number of primes in the sequence $\{[{x}/{n}]\}_{n\geqslant 1}$. Improving a result of Heyman [‘Primes in floor function sets’, Integers 22 (2022), Article no. A59], we show

$$ \begin{align*} \pi_{\mathcal{S}}(x) = \int_2^{\sqrt{x}} \frac{d t}{\log t} + \int_2^{\sqrt{x}} \frac{d t}{\log(x/t)} + O(\sqrt{x}\,\mathrm{e}^{-c(\log x)^{3/5}(\log\log x)^{-1/5}}) \quad\mbox{and}\quad S_{\mathbb{1}_{{\mathbb P}}}(x) = C_{\mathbb{1}_{{\mathbb P}}} x + O_{\varepsilon}(x^{9/19+\varepsilon}) \end{align*} $$

for $x\to \infty $, where $C_{\mathbb {1}_{{\mathbb P}}} := \sum _{p} {1}/{p(p+1)}$, $c>0$ is a positive constant and $\varepsilon $ is an arbitrarily small positive number.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

1 Introduction

The distribution of prime numbers is one of the most important problems in number theory. Denote by $\pi (x)$ the number of primes $p\leqslant x$ . The prime number theorem states that

$$ \begin{align*} \pi(x) = \frac{x}{\log x} + O\bigg(\frac{x}{(\log x)^2}\bigg) \quad (x\to\infty). \end{align*} $$

A strong form of this theorem is

(1.1) $$ \begin{align} \pi(x) = {\mathrm{Li}}(x) + O(x \exp(-c(\log x)^{3/5}(\log_2x)^{-1/5})) \quad (x\to\infty), \end{align} $$

where c is a positive constant, $\log _2$ denotes the iterated logarithm function and

$$ \begin{align*} {\mathrm{Li}}(x) := \int_2^x \frac{d t}{\log t}. \end{align*} $$

The Riemann hypothesis is equivalent to the asymptotic formula

(1.2) $$ \begin{align} \pi(x) = {\mathrm{Li}}(x) + O_{\varepsilon}(x^{1/2+\varepsilon}) \quad\; (x\to\infty), \end{align} $$

where $\varepsilon $ is an arbitrarily small positive number. More generally, let $\mathcal {N}(x)$ be a set of integers of $[1, x]$ and let $\mathcal {N}_{{\mathbb P}}(x)$ be the set of prime numbers in $\mathcal {N}(x)$ . We expect that

(1.3) $$ \begin{align} |\mathcal{N}_{{\mathbb P}}(x)|\sim \frac{|\mathcal{N}(x)|}{\log |\mathcal{N}(x)|} \quad (x\to \infty), \end{align} $$

provided $\mathcal {N}(x)$ is rather regular and is not too sparse. Some well-known examples are

$$ \begin{align*} \{qn+a\leqslant x\}, \;\; \{[n^c]\leqslant x\}, \;\; \{m^2+n^4\leqslant x\}, \;\; \{m^3+2n^3\leqslant x\}, \;\; \{x<n\leqslant x+x^{7/12+\varepsilon}\}, \end{align*} $$

the respective densities for which are

$$ \begin{align*} x/\varphi(q) \quad &(q\leqslant (\log x)^A, \text{Walfisz--Siegel } [3]), \\ x^{1/c} \quad &\bigg(c\leqslant \dfrac{2817}{2426}, \text{Rivat--Sargos } [12]\bigg), \\ x^{3/4} \quad &(\text{Friedlander--Iwaniec } [4]), \\ x^{2/3} \quad &(\text{Heath-Brown } [5]), \\ x^{7/12+\varepsilon} \quad &(\text{Huxley } [8]), \end{align*} $$

where $[t]$ is the integral part of the real number t, $\varphi (q)$ is the Euler function, A is any positive constant and $\varepsilon>0$ is an arbitrarily small positive number.

Recently, Bordellès et al. [Reference Bordellès, Dai, Heyman, Pan and Shparlinski2] investigated the asymptotic behaviour of the summative function

$$ \begin{align*} S_f(x) := \sum_{n\leqslant x} f\bigg(\bigg[\frac{x}{n}\bigg]\bigg) \end{align*} $$

under some simple hypothesis on the growth of f and there are a number of further developments on this theme. If we use $\Lambda (n)$ to denote the von Mangoldt function, then [Reference Wu13, Theorem 1.2(i)] or [Reference Zhai15, Theorem 1] give us immediately

(1.4) $$ \begin{align} S_{\Lambda}(x) = C_{\Lambda} x + O_{\varepsilon}(x^{1/2+\varepsilon}), \end{align} $$

for any $\varepsilon>0$ and $x\to \infty $ , where $C_{\Lambda } := \sum _{n\geqslant 1} {\Lambda (n)}/{n(n+1)}$ . Ma and Wu [Reference Ma and Wu11] applied the Vaughan identity and the technique of one-dimensional exponential sums to break the $\tfrac 12$ -barrier by establishing

(1.5) $$ \begin{align} S_{\Lambda}(x) = C_{\Lambda} x + O_{\varepsilon}(x^{35/71+\varepsilon}). \end{align} $$

This result seems rather interesting if we compare it with (1.2). The exponent ${35}/{71}$ has been improved to ${97}/{203}$ by Bordellès [Reference Bordellès1] and ${9}/{19}$ by Liu et al. [Reference Liu, Wu and Yang10], using more sophisticated techniques of multiple exponential sums. Obviously, (1.5) is the prime number theorem for the floor function set

$$ \begin{align*} \mathcal{S}(x) := \bigg\{\bigg[\frac{x}{n}\bigg] : 1\leqslant n\leqslant x\bigg\} \end{align*} $$

considered as the weighted count of prime powers. Very recently, Heyman [Reference Heyman7] examined the number of primes in the floor function set $\mathcal {S}(x)$ without the multiplicity. The principal result of Heyman [Reference Heyman7, Theorem 1] is the asymptotic formula

(1.6) $$ \begin{align} \pi_{\mathcal{S}}(x) := \sum_{\substack{p\leqslant x\\ \exists\,n\,\text{such that}\; [x/n]=p}} 1 = \frac{4\sqrt{x}}{\log x} + O\bigg(\frac{\sqrt{x}}{(\log x)^2}\bigg) \quad(x\to\infty). \end{align} $$

Since Heyman [Reference Heyman6, Theorems 1 and 2] proved that

(1.7) $$ \begin{align} |\mathcal{S}(x)| = 2\sqrt{x} + O(1) \quad(x\to\infty). \end{align} $$

it follows from (1.6) that (1.3) holds for this sparse set $\mathcal {S}(x)$ . This may be the first example of such a sparse subset of $[1, x]\cap {\mathbb N}$ (of density $x^{1/2}$ ) for which the prime number theorem holds.

It seems natural and interesting to establish an analogue of the strong form of the prime number theorem in (1.1) for the set $\mathcal {S}(x)$ . We prove such a result.

Theorem 1.1. (i) For $x\to \infty $ ,

(1.8) $$ \begin{align} \pi_{\mathcal{S}}(x) = {\mathrm{Li}}_{\mathcal{S}}(x) + O(\sqrt{x} \exp(-c'(\log x)^{3/5}(\log_2x)^{-1/5})), \end{align} $$

where $c'>0$ is a positive constant and

$$ \begin{align*} {\mathrm{Li}}_{\mathcal{S}}(x) := \int_2^{\sqrt{x}} \frac{d t}{\log t} + \int_2^{\sqrt{x}} \frac{d t}{\log(x/t)}\cdot \end{align*} $$

(ii) There is a real sequence $\{a_n\}_{n\geqslant 1}$ with $a_1=4$ such that for any positive integer $N\geqslant 1$ ,

$$ \begin{align*} \pi_{\mathcal{S}}(x) = \sqrt{x} \sum_{n=1}^{N} \frac{a_n}{(\log x)^n} + O_N\bigg(\frac{\sqrt{x}}{(\log x)^{N+1}}\bigg) \quad (x\to\infty). \end{align*} $$

Let ${\mathbb P}$ be the set of all primes and let ${{\mathbb P}}_{\mathrm {ower}}$ be the set of all prime powers. Denote by $\mathbb {1}_{{\mathbb P}}$ and $\mathbb {1}_{{{\mathbb P}}_{\mathrm {ower}}}$ their characteristic functions. Define

$$ \begin{align*} S_{\mathbb{1}_{{\mathbb P}}}(x) := \sum_{n\leqslant x} \mathbb{1}_{{\mathbb P}}\bigg(\bigg[\frac{x}{n}\bigg]\bigg), \quad S_{\mathbb{1}_{{{\mathbb P}}_{\mathrm{ower}}}}(x) := \sum_{n\leqslant x} \mathbb{1}_{{{\mathbb P}}_{\mathrm{ower}}}\bigg(\bigg[\frac{x}{n}\bigg]\bigg). \end{align*} $$

Theorems 5 and 7 of [Reference Heyman7] can be stated as follows:

(1.9) $$ \begin{align} S_{\mathbb{1}_{{\mathbb P}}}(x) & = C_{\mathbb{1}_{{\mathbb P}}} x + O(x^{1/2}), \end{align} $$
(1.10) $$ \begin{align} S_{\mathbb{1}_{{{\mathbb P}}_{\mathrm{ower}}}}(x) & = C_{\mathbb{1}_{{{\mathbb P}}_{\mathrm{ower}}}} x + O(x^{1/2}), \end{align} $$

where $C_{\mathbb {1}_{{\mathbb P}}} := \sum _{p} {1}/{p(p+1)}$ and $C_{\mathbb {1}_{{{\mathbb P}}_{\mathrm {ower}}}} := \sum _{p, \, \nu \geqslant 1} {1}/{p^{\nu }(p^{\nu }+1)}$ . Similar to (1.4), these are immediate consequences of [Reference Wu13, Theorem 1.2(i)] or [Reference Zhai15, Theorem 1]. Heyman [Reference Heyman7, Theorem 6] also proved that there is a positive constant $B>0$ such that the inequality

(1.11) $$ \begin{align} S_{\mathbb{1}_{{\mathbb P}}}(x) \geqslant C_{\mathbb{1}_{{\mathbb P}}} x - \frac{Bx^{1/2}}{\log x} \end{align} $$

for $x\geqslant 2$ . We improve these results by breaking the $\tfrac 12$ -barrier in the error terms of (1.9), (1.10) and (1.11).

Theorem 1.2. For any $\varepsilon>0$ ,

(1.12) $$ \begin{align} S_{\mathbb{1}_{{\mathbb P}}}(x) & = C_{\mathbb{1}_{{\mathbb P}}} x + O_{\varepsilon}(x^{9/19+\varepsilon}), \end{align} $$
(1.13) $$ \begin{align} S_{\mathbb{1}_{{{\mathbb P}}_{\mathrm{ower}}}}(x) & = C_{\mathbb{1}_{{{\mathbb P}}_{\mathrm{ower}}}} x + O_{\varepsilon}(x^{9/19+\varepsilon}), \end{align} $$

as $x\to \infty $ , where the implied constants depend on $\varepsilon $ .

Remark 1.3. It is possible to improve the error terms in (1.12) and (1.13). It seems interesting to prove $\Omega $ -results for the error terms in (1.8), (1.12) and (1.13). We shall return to this problem in forthcoming work.

Very recently, Yu and Wu [Reference Yu and Wu14] generalised Heyman’s (1.7) by showing

$$ \begin{align*} \mathcal{S}(x; q, a) := \sum_{\substack{m\in \mathcal{S}(x)\\ m\equiv a \,(\mathrm{mod}\,q)}} 1 = \frac{2\sqrt{x}}{q} + O((x/q)^{1/3}\log x) \end{align*} $$

uniformly for $x\geqslant 3$ , $1\leqslant q\leqslant x^{1/4}/(\log x)^{3/2}$ and $1\leqslant a\leqslant q$ , where the implied constant is absolute. This confirms a numerical test of Heyman.

2 Proof of Theorem 1.1

We begin by following the argument of [Reference Heyman7]. First, we note that

$$ \begin{align*} \mathcal{S}(x) = \bigg\{p\in \mathbb{P} : \exists \; n\in [1, x] \;\text{such that}\; \bigg[\frac{x}{n}\bigg]=p\bigg\}. \end{align*} $$

Further, if $[{x}/{n}] = p\in \mathbb {P}$ , then $x/(p+1)<n\leqslant x/p$ . Thus, we can write

(2.1) $$ \begin{align} \pi_{\mathcal{S}}(x) = \sum_{p\leqslant x} \mathbb{1}\bigg(\bigg[\frac{x}{p}\bigg]-\bigg[\frac{x}{p+1}\bigg]>0\bigg) = G_1(x) + G_2(x), \end{align} $$

where $\mathbb {1}(Q)=1$ if the statement Q is true and 0 otherwise, and

$$ \begin{align*} G_1(x) & := \sum_{p\leqslant \sqrt{x}} \mathbb{1}\bigg(\bigg[\frac{x}{p}\bigg]-\bigg[\frac{x}{p+1}\bigg]>0\bigg), \\ G_2(x) & := \sum_{\sqrt{x}<p\leqslant x} \mathbb{1}\bigg(\bigg[\frac{x}{p}\bigg]-\bigg[\frac{x}{p+1}\bigg]>0\bigg). \end{align*} $$

For $p\leqslant \sqrt {x}-1$ ,

$$ \begin{align*} \bigg[\frac{x}{p}\bigg]-\bigg[\frac{x}{p+1}\bigg]>\frac{x}{p(p+1)}-1 >0. \end{align*} $$

Thus, the prime number theorem (1.1) gives us

(2.2) $$ \begin{align} G_1(x) = \pi(\sqrt{x}) + O(1) = {\mathrm{Li}}(\sqrt{x}) + O(\sqrt{x} \exp(-c'(\log x)^{3/5}(\log_2x)^{-1/5})) \end{align} $$

for $x\geqslant 3$ , where $c'>0$ is a positive constant.

Next, we treat $G_2(x)$ . Noticing that

$$ \begin{align*} 0<\frac{x}{p}-\frac{x}{p+1}=\frac{x}{p(p+1)}<1 \end{align*} $$

for $p>\sqrt {x}$ , the quantity $[{x}/{p}]-[{x}/{p+1}]$ can only equal 0 or 1. However, for $p>x^{10/19}$ , we have $p=[{x}/{n}]$ for some $n\leqslant x^{9/19}$ . Thus, we can write

(2.3) $$ \begin{align} \begin{aligned} G_2(x) & = \sum_{x^{1/2}<p\leqslant x^{10/19}} \bigg(\bigg[\frac{x}{p}\bigg]-\bigg[\frac{x}{p+1}\bigg]\bigg) + O(x^{9/19}) \\ & = \sum_{x^{1/2}<p\leqslant x^{10/19}} \bigg(\frac{x}{p}-\frac{x}{p+1}-\psi\bigg(\frac{x}{p}\bigg)+\psi\bigg(\frac{x}{p+1}\bigg)\bigg) + O(x^{9/19}) \\ & = G_{2, 1}(x) - G_{2, 2}^{\langle 0\rangle}(x) + G_{2, 2}^{\langle 1\rangle}(x) + O(x^{9/19}), \end{aligned} \end{align} $$

where $\psi (t):=t-[t]-\tfrac 12$ and

$$ \begin{align*} G_{2, 1}(x) & := \sum_{x^{1/2}<p\leqslant x^{10/19}} \bigg(\frac{x}{p}-\frac{x}{p+1}\bigg), \\ G_{2, 2}^{\langle\delta\rangle}(x) & := \sum_{x^{1/2}<p\leqslant x^{10/19}} \psi\bigg(\frac{x}{p+\delta}\bigg) \quad (\delta=0, 1). \end{align*} $$

With the help of the prime number theorem (1.1), a simple partial integration gives

$$ \begin{align*} G_{2, 1}(x) & = \sum_{x^{1/2}<p\leqslant x/2} \frac{x}{p^2} + O(x^{9/19}) = x \int_{\sqrt{x}}^{x/2} \frac{d \pi(t)}{t^2} + O(x^{9/19}) \\ & = x \int_{\sqrt{x}}^{x/2} \frac{d t}{t^2\log t} + O(\sqrt{x}\exp(-c'(\log x)^{3/5}(\log_2x)^{-1/5}), \end{align*} $$

where $c'>0$ is a positive constant. Making the change of variables $t\to x/t$ in the last integral, it follows that

(2.4) $$ \begin{align} G_{2, 1}(x) = \int_2^{\sqrt{x}} \frac{d t}{\log(x/t)} + O(\sqrt{x}\exp(-c'(\log x)^{3/5}(\log_2x)^{-1/5}) \end{align} $$

for $x\to \infty $ .

It remains to bound $G_{2, 2}^{\langle \delta \rangle }(x)$ . Similar to [Reference Liu, Wu and Yang10], define

$$ \begin{align*} \mathfrak{S}_{\delta}(x; D, D') := \sum_{D<d\leqslant D'} \Lambda(d) \psi\bigg(\frac{x}{d+\delta}\bigg). \end{align*} $$

According to [Reference Liu, Wu and Yang10, (4.3)], for any $\varepsilon>0$ ,

$$ \begin{align*} \mathfrak{S}_{\delta}(x; D, 2D) \ll_{\varepsilon} (x^2 D^7)^{1/12} x^{\varepsilon} \end{align*} $$

uniformly for $x\geqslant 3$ and $x^{6/13}\leqslant D\leqslant x^{2/3}$ . The same proof shows that for any $\varepsilon>0$ ,

(2.5) $$ \begin{align} \mathfrak{S}_{\delta}(x; D, D') \ll_{\varepsilon} (x^2 D^7)^{1/12} x^{\varepsilon} \end{align} $$

uniformly for $x\geqslant 3$ , $x^{6/13}\leqslant D\leqslant x^{2/3}$ and $D<D'\leqslant 2D$ . Since we have trivially

$$ \begin{align*} \sum_{D<p^{\nu}\leqslant D', \, \nu\geqslant 2} \Lambda(p^{\nu}) \psi\bigg(\frac{x}{p^{\nu}+\delta}\bigg) \ll \sum_{p\leqslant (2D)^{1/2}} \sum_{\nu\leqslant (\log 2D)/\log p} \log p \ll D^{1/2}, \end{align*} $$

the inequality (2.5) implies that the bound

(2.6) $$ \begin{align} \sum_{D<p\leqslant D'} (\log p) \psi\bigg(\frac{x}{p+\delta}\bigg) \ll_{\varepsilon} (x^2 D^7)^{1/12} x^{\varepsilon} \end{align} $$

holds uniformly for $x\geqslant 3$ , $x^{6/13}\leqslant D\leqslant x^{2/3}$ and $D<D'\leqslant 2D$ . Using (2.6),

(2.7) $$ \begin{align} \begin{aligned} G_{2, 2}^{\langle\delta\rangle}(x) & \ll \max_{x^{1/2}<D\leqslant x^{10/19}} \sum_{D<p\leqslant 2D} \psi\bigg(\frac{x}{p+\delta}\bigg) \\ & \ll \max_{x^{1/2}<D\leqslant x^{10/19}} \int_D^{2D} \frac{1}{\log t} \,d \bigg(\sum_{D<p\leqslant t} (\log p) \psi\bigg(\frac{x}{p+\delta}\bigg)\bigg) \\ & \ll_{\varepsilon} \max_{x^{1/2}<D\leqslant x^{10/19}} (x^2 D^7)^{1/12} x^{\varepsilon} \\ & \ll_{\varepsilon} x^{9/19+\varepsilon}. \end{aligned} \end{align} $$

Inserting (2.4) and (2.7) into (2.3), we find that

(2.8) $$ \begin{align} G_2(x) = \int_2^{\sqrt{x}} \frac{d t}{\log(x/t)} + O(\sqrt{x}\exp(-c'(\log x)^{3/5}(\log_2x)^{-1/5}). \end{align} $$

Now the required result (1.8) follows from (2.1), (2.2) and (2.8).

The second assertion is an immediate consequence of the first one thanks to a simple partial integration.

3 Proof of Theorem 1.2

We begin by following the argument of [Reference Liu, Wu and Yang9]. Let $f=\mathbb {1}_{{\mathbb P}}$ or $\mathbb {1}_{{{\mathbb P}}_{\mathrm {ower}}}$ and let $N\in [x^{1/3}, x^{1/2})$ be a parameter which can be chosen later. First, we write

(3.1) $$ \begin{align} S_f(x) = \sum_{n\leqslant x} f\bigg(\bigg[\frac{x}{n}\bigg]\bigg) = S_f^{\dagger}(x)+S_f^{\sharp}(x) \end{align} $$

with

$$ \begin{align*} S_f^{\dagger}(x):=\sum_{n\leqslant N} f\bigg(\bigg[\frac{x}{n}\bigg]\bigg), \quad S_f^{\sharp}(x):=\sum_{N<n\leqslant x} f\bigg(\bigg[\frac{x}{n}\bigg]\bigg). \end{align*} $$

We have trivially

(3.2) $$ \begin{align} S_f^{\dagger}(x) \ll N. \end{align} $$

To bound $S_f^{\sharp }(x)$ , we put $d=[x/n]$ . Noticing that

$$ \begin{align*} x/n-1<d\leqslant x/n \Leftrightarrow x/(d+1)<n\leqslant x/d, \end{align*} $$

we see that

(3.3) $$ \begin{align} \begin{aligned} S_f^{\sharp}(x) & = \sum_{d\leqslant x/N} f(d) \sum_{x/(d+1)<n\leqslant x/d} 1 \\ & = \sum_{d\leqslant x/N} f(d) \bigg(\frac{x}{d}-\psi\bigg(\frac{x}{d}\bigg)-\frac{x}{d+1}+\psi\bigg(\frac{x}{d+1} \bigg) \bigg) \\ & = x \sum_{d\geqslant 1} \frac{f(d)}{d(d+1)} + \mathcal{R}_1^{f}(x, N) - \mathcal{R}_0^{f}(x, N) + O(N), \end{aligned} \end{align} $$

where we have used the bounds

$$ \begin{align*} x \sum_{d>x/N} \frac{f(d)}{d(d+1)}\ll N, \quad \sum_{d\leqslant N} f(d)\bigg(\psi\bigg(\frac{x}{d+1}\bigg) - \psi\bigg(\frac{x}{d}\bigg)\bigg) \ll N \end{align*} $$

and

$$ \begin{align*} \mathcal{R}_{\delta}^{f}(x, N) = \sum_{N<d\leqslant x/N} f(d) \psi\bigg(\frac{x}{d+\delta}\bigg). \end{align*} $$

Combining (3.1), (3.2) and (3.3), it follows that

$$ \begin{align*} S_f(x) = x \sum_{d\geqslant 1} \frac{f(d)}{d(d+1)} + O_{\varepsilon}(|\mathcal{R}_1^{f}(x, N)| + |\mathcal{R}_0^{f}(x, N)| + N). \end{align*} $$

However,

$$ \begin{align*} \mathcal{R}_{\delta}^{\mathbb{1}_{{{\mathbb P}}_{\mathrm{ower}}}}(x, N) = \sum_{N<p^{\nu}\leqslant x/N} \psi\bigg(\frac{x}{p^{\nu}+\delta}\bigg) = \mathcal{R}_{\delta}^{\mathbb{1}_{{\mathbb P}}}(x, N) + O((x/N)^{1/2}). \end{align*} $$

Thus, to prove Theorem 1.2, it suffices to show that

$$ \begin{align*} \mathcal{R}_{\delta}^{\mathbb{1}_{{\mathbb P}}}(x, N)\ll_{\varepsilon} N x^{\varepsilon} \quad (x\geqslant 1) \end{align*} $$

for $N=x^{9/19}$ . This can be done exactly as for (2.7) by using (2.6):

$$ \begin{align*} \mathcal{R}_{\delta}^{\mathbb{1}_{{\mathbb P}}}(x, N) & \ll x^{\varepsilon} \max_{x^{9/19}<D\leqslant x^{10/19}} \sum_{D<p\leqslant 2D} \psi\bigg(\frac{x}{p+\delta}\bigg) \\ & \ll x^{\varepsilon} \max_{x^{9/19}<D\leqslant x^{10/19}} \int_D^{2D} \frac{1}{\log t} \,d \bigg(\sum_{D<p\leqslant t} (\log p) \psi\bigg(\frac{x}{p+\delta}\bigg)\bigg) \\ & \ll_{\varepsilon} \max_{x^{9/19}<D\leqslant x^{10/19}} (x^2 D^7)^{1/12} x^{\varepsilon} \\ & \ll_{\varepsilon} x^{9/19+\varepsilon}. \end{align*} $$

This completes the proof.

Footnotes

This work is supported in part by the National Natural Science Foundation of China (Grant Nos. 11971370 and 12071375).

References

Bordellès, O., ‘On certain sums of number theory’, Int. J. Number Theory 18(99) (2022), 20532074.10.1142/S1793042122501056CrossRefGoogle Scholar
Bordellès, O., Dai, L., Heyman, R., Pan, H. and Shparlinski, I. E., ‘On a sum involving the Euler function’, J. Number Theory 202 (2019), 278297.10.1016/j.jnt.2019.01.006CrossRefGoogle Scholar
Davenport, H., Multiplicative Number Theory, 3rd edn, Graduate Texts in Mathematics, 74 (Springer-Verlag, New York, 2000), revised and with a preface by H. L. Montgomery.Google Scholar
Friedlander, J. and Iwaniec, H., ‘The polynomial ${X}^2+{Y}^4$ captures its primes’, Ann. of Math. (2) 148(3) (1998), 9451040.10.2307/121034CrossRefGoogle Scholar
Heath-Brown, D. R., ‘Primes represented by ${x}^3+2{y}^3$ ’, Acta Math. 186(1) (2001), 184.10.1007/BF02392715CrossRefGoogle Scholar
Heyman, R., ‘Cardinality of a floor function set’, Integers 19 (2019), Article no. A67.Google Scholar
Heyman, R., ‘Primes in floor function sets’, Integers 22 (2022), Article no. A59.Google Scholar
Huxley, M. N., ‘On the difference between consecutive primes’, Invent. Math. 15 (1972), 164170.10.1007/BF01418933CrossRefGoogle Scholar
Liu, K., Wu, J. and Yang, Z.-S., ‘On some sums involving the integral part function’, Preprint, 2021, arXiv:2109.01382v1.Google Scholar
Liu, K., Wu, J. and Yang, Z.-S., ‘A variant of the prime number theorem’, Indag. Math. (N.S.) 33 (2022), 388396.10.1016/j.indag.2021.09.005CrossRefGoogle Scholar
Ma, J. and Wu, J., ‘On a sum involving the von Mangoldt function’, Period. Math. Hungar. 83(1) (2021), 3948.10.1007/s10998-020-00359-6CrossRefGoogle Scholar
Rivat, J. and Sargos, P., ‘Nombres premiers de la forme $\left[{n}^c\right]$ ’, Canad. J. Math. 53(2) (2001), 414433 (in French). English summary.10.4153/CJM-2001-017-0CrossRefGoogle Scholar
Wu, J., ‘Note on a paper by Bordellès, Dai, Heyman, Pan and Shparlinski’, Period. Math. Hungar. 80 (2020), 95102.10.1007/s10998-019-00300-6CrossRefGoogle Scholar
Yu, Y. and Wu, J., ‘Distribution of elements of a floor function set in arithmetical progression’, Bull. Aust. Math. Soc. 106(3) (2022), 419424.10.1017/S000497272200017XCrossRefGoogle Scholar
Zhai, W., ‘On a sum involving the Euler function’, J. Number Theory 211 (2020), 199219.10.1016/j.jnt.2019.10.003CrossRefGoogle Scholar