Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T02:34:59.540Z Has data issue: false hasContentIssue false

ON THE NUMBER OF SOLUTIONS OF THE DIOPHANTINE EQUATION axmbyn=c

Published online by Cambridge University Press:  13 January 2010

BO HE
Affiliation:
Department of Mathematics, ABA Teachers College, Wenchuan, Sichuan 623000, PR China (email: [email protected])
ALAIN TOGBÉ*
Affiliation:
Mathematics Department, Purdue University North Central, 1401 South US 421, Westville IN 46391, USA (email: [email protected], [email protected])
*
For correspondence; e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let a, b, c, x and y be positive integers. In this paper we sharpen a result of Le by showing that the Diophantine equation has at most two positive integer solutions (m,n) satisfying min (m,n)>1.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2010

Footnotes

The first author was supported by the Applied Basic Research Foundation of Sichuan Provincial Science and Technology Department (No. 2009JY0091). The second author is grateful to Purdue University North Central for the support.

References

[1]Bennett, M., ‘On some exponential equations of S. S. Pillai’, Canad. J. Math. 53 (2001), 897922.CrossRefGoogle Scholar
[2]Bugeaud, Y. and Luca, F., ‘On Pillai’s diophantine equation’, New York J. Math. 12 (2006), 193217.Google Scholar
[3]Bugeaud, Y. and Shorey, T. N., ‘On the diophantine equation ’, Pacific J. Math. 207 (2002), 6175.CrossRefGoogle Scholar
[4]Cao, Z. F., ‘On the equation ax mby n=2’, Kexue Tongbao 35 (1990), 558559 (in Chinese).Google Scholar
[5]Cassels, J. W. S., ‘On the equation a xb y=1. II’, Proc. Cambridge Philos. Soc. 56 (1960), 97103.CrossRefGoogle Scholar
[6]Dickson, L. E., History of the Theory of Numbers, Vol. II (Carnegie Institution of Washington. Reprinted by Chelsea Publ. Co., New York, 1971).Google Scholar
[7]He, B. and Togbé, A., ‘On the number of solutions of Goormaghtigh equation for given x and y’, Indag. Math. (N.S.) 19(1) (2008), 6572.CrossRefGoogle Scholar
[8]Herschfeld, A., ‘The equation 2x−3y=d’, Bull. Amer. Math. Soc. 42 (1936), 231234.CrossRefGoogle Scholar
[9]Le, M., ‘A note on the diophantine equation ax mby n=k’, Indag. Math. 3(2) (1992), 185191.Google Scholar
[10]LeVeque, W. J., ‘On the equation a xb y=1’, Amer. J. Math. 74 (1952), 325331.CrossRefGoogle Scholar
[11]Matveev, E. M., ‘An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers II’, Izv. Math. 64 (2000), 12171269.CrossRefGoogle Scholar
[12]Mihailescu, P., ‘Primary cyclotomic units and a proof of Catalan’s conjecture’, J. Reine Angew. Math. 572 (2004), 167195.Google Scholar
[13] PARI/GP, version 2.1.7, Bordeaux, 2005, http://pari.math.u-bordeaux.fr/.Google Scholar
[14]Pillai, S. S., ‘On the inequality 0<a xb yn’, J. Indian Math. Soc. 19 (1931), 111.Google Scholar
[15]Pillai, S. S., ‘On a xb y=c’, J. Indian Math. Soc. (N.S.) 2 (1936), 119122.Google Scholar
[16]Ribenboim, P., Catalan’s Conjecture (Academic Press, London, 1994).Google Scholar
[17]Ribenboim, P., My Numbers, My Friends: Popular Lectures on Number Theory (Springer, Berlin, 2000).CrossRefGoogle Scholar
[18]Shorey, T. N., ‘On the equation ax mby n=k’, Indag. Math. 48 (1986), 353358.CrossRefGoogle Scholar
[19]Stroeker, R. J. and Tijdeman, R., Diophantine equations, Computational Methods in Number Theory, Part II, Math. Centre Tracts, 155 (Math. Centrum, Amsterdam, 1982), pp. 321369.Google Scholar