Hostname: page-component-599cfd5f84-96rnj Total loading time: 0 Render date: 2025-01-07T07:00:32.350Z Has data issue: false hasContentIssue false

On the norming constants occuring in convergent Markov chains

Published online by Cambridge University Press:  17 April 2009

Harry Cohn
Affiliation:
Department of Statistics, Institute of Advanced Studies, Australian National University, Canberra, Act.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Several theorems concerning the norming constants {a} and {bn} making a normed Markov chain {an (Xn+bn): n ≥ 0} convergent in distribution (or in probability) are given. It is shown that if Rényi's mixing conditions holds, and , whereas in the general case with α ≠ 0 and exists and are finite. Examples regarding maxima of independent and identically distributed random variables, random walk, and branching processes are considered.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1977

References

[1]Darling, D.A., “The Galton-Watson process with infinite mean”, J. Appl. Probability 7 (1970), 455456.CrossRefGoogle Scholar
[2]Hewitt, Edwin and Savage, Leonard J., “Symmetric measures on cartesian products”, Trans. Amer. Math. Soc. 80 (1955), 470501.CrossRefGoogle Scholar
[3]Heyde, C.C., “Extension of a result of Seneta for the supercritical Galton Watson process”, Ann. Math. Statist. 41 (1970), 739742.CrossRefGoogle Scholar
[4]Loève, Michel, Probability theory, third edition (Van Nostrand, Princeton, New Jersey; Toronto; New York; London; 1963).Google Scholar
[5]Orey, Steven, Lecture notes on limit theorems for Markov chain transition probabilities (Van Nostrand Reinhold, London, New York, Cincinnati, Toronto, Melbourne, 1971).Google Scholar
[6]Rényi, A., “On mixing sequences of sets”, Acta Math. Acad. Sci. Hungar. 9 (1958), 215228.CrossRefGoogle Scholar
[7]Rényi, A. and Révész, P., “On mixing sequences of random variables”, Acta Math. Acad. Sci. Hungar. 9 (1958), 389393.CrossRefGoogle Scholar
[8]Richter, W., “Zu einigen Konvergenzeigenschaften von Folgen zufälliger Elemente”, Studia Math. 25 (1965), 231243.CrossRefGoogle Scholar
[9]Richter, Wolfgang, “Das Null-Eins-Gesetz und ein Grenzwertsatz für zufällige Prozesse mit diskreter zufälliger Zeit”, Wiss. Z. Techn. Univ. Dresden 14 (1965), 497504.Google Scholar
[10]Seneta, E., “On recent theorems concerning the supercritical Galton-Watson process”, Ann. Math. Statist. 39 (1968), 20982102.CrossRefGoogle Scholar
[11]Seneta, E., “The simple branching process with infinite mean. I”, J. Appl. Probability 10 (1973), 206212.Google Scholar