Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-22T16:31:43.917Z Has data issue: false hasContentIssue false

ON THE NONNEGATIVITY OF THE DIRICHLET ENERGY OF A WEIGHTED GRAPH

Published online by Cambridge University Press:  17 December 2021

KYLE BRODER*
Affiliation:
Mathematical Sciences Institute, Australian National University, Acton, ACT 2601, Australia and BICMR, Peking University, Beijing 100871, PR China

Abstract

Motivated by considerations of the quadratic orthogonal bisectional curvature, we address the question of when a weighted graph (with possibly negative weights) has nonnegative Dirichlet energy.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bishop, R. L. and Goldberg, S. I., ‘On the second cohomology group of a Kaehler manifold of positive curvature’, Proc. Amer. Math. Soc. 16 (1965), 119122.CrossRefGoogle Scholar
Broder, K., ‘The Schwarz lemma in Kähler and non-Kähler geometry’, Preprint, 2021, arxiv:2109.06331.Google Scholar
Broder, K., ‘An eigenvalue characterisation of the dual EDM cone’, Bull. Aust. Math. Soc. to appear, doi:10.1017/S0004972721000915.Google Scholar
Chau, A. and Tam, L.-F., ‘On quadratic orthogonal bisectional curvature’, J. Differential Geom. 92(2) (2012), 187200.CrossRefGoogle Scholar
Dattorro, J., ‘Equality relating Euclidean distance cone to positive semidefinite cone’, Linear Algebra Appl. 428(11–12) (2008), 25972600.CrossRefGoogle Scholar
Dattorro, J., Convex Optimization & Euclidean Distance Geometry $2\varepsilon$ (MeBoo, Palo Alto, CA, 2019), available at the author’s webpage at https://convexoptimization.com/TOOLS/0976401304.pdf.Google Scholar
Demailly, J.-P., Peternell, Y. and Schneider, M., ‘Compact complex manifolds with numerically effective tangent bundles’, J. Algebraic Geom. 3 (1994), 295345.Google Scholar
Gu, H. and Zhang, Z., ‘An extension of Mok’s theorem on the generalized Frankel conjecture’, Sci. China Math. 53 (2010), 112.CrossRefGoogle Scholar
Li, Q., Wu, D. and Zheng, F., ‘An example of compact Kähler manifold with non-negative quadratic bisectional curvature’, Proc. Amer. Math. Soc. 141(6) (2013), 21172126.CrossRefGoogle Scholar
Mok, N., ‘The uniformization theorem for compact Kähler manifolds of nonnegative holomorphic bisectional curvature’, J. Differential Geom. 27 (1988), 179214.CrossRefGoogle Scholar
Mori, S., ‘Projective manifolds with ample tangent bundles’, Ann. of Math. (2) 110(3) (1979), 593606.CrossRefGoogle Scholar
Petersen, P., Riemannian Geometry, 3rd edn, Graduate Texts in Mathematics, 171 (Springer, Cham, 2016).CrossRefGoogle Scholar
Petersen, P. and Wink, M., ‘New curvature conditions for the Bochner technique’, Invent. Math. 224 (2021), 3354.CrossRefGoogle Scholar
Petersen, P. and Wink, M., ‘Vanishing and estimation results for Hodge numbers’, J. reine angew. Math. 2021 (2021), 197219.CrossRefGoogle Scholar
Schoenberg, I. J., ‘Remarks to Maurice Fréchet’s article “Sur la définition axiomatique d’une classe déspace distanciés vectoriellement applicable sur l’espace de Hilbert”’, Ann. of Math. (2) 36(3) (1935), 724732.CrossRefGoogle Scholar
Siu, Y.-T. and Yau, S.-T., ‘Compact Kähler manifolds of positive bisectional curvature’, Invent. Math. 59(2) (1980), 189204.CrossRefGoogle Scholar
Wu, D., Yau, S.-T. and Zheng, F., ‘A degenerate Monge–Ampère equation and the boundary classes of Kähler cones’, Math. Res. Lett. 16(2) (2009), 365374.CrossRefGoogle Scholar
Yang, X. and Zheng, F., ‘On real bisectional curvature for Hermitian manifolds’, Trans. Amer. Math. Soc. 371(4) (2019), 27032718.CrossRefGoogle Scholar