Hostname: page-component-599cfd5f84-jr95t Total loading time: 0 Render date: 2025-01-07T07:01:24.564Z Has data issue: false hasContentIssue false

On the Kneser-Hukuhara property for integral equations in locally convex spaces

Published online by Cambridge University Press:  17 April 2009

Stanislaw Szufla
Affiliation:
A. Mickiewicz UniversityPoznań, Poland
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper contains a Hukuhara – type theorem for nonlinear Volterra integral equations in locally convex spaces.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1987

References

[1]Ambrosetti, A., “Un teorema di esistenza per le equazioni differenziali negli spazi di Banach”, Rend. Sem. Mat. Univ. Padova, 39 (1967), 349369.Google Scholar
[2]Cramer, E., Lakshmikantham, V. and Mitchell, A., “On the existence of weak solutions of differential equations in nonreflexive Banach spaces”, Nonlinear Anal. 2 (1978), 169177.CrossRefGoogle Scholar
[3]Dubois, J. and Morales, P., “On the Hukuhara – Kneser property for some Cauchy problems in locally convex topological vector spaces”, Lecture Notes in Math. 964 (1982), 162170.CrossRefGoogle Scholar
[4]Hukuhara, M., “Sur l'application qui fait correspondre a un point un continu bicompact”, Proc. Japan Acad. 31 (1955), 57.Google Scholar
[5]Hukuhara, M., “Théorems fondamentaux de la théorie des équations différentielles ordinaires dans l'espace vectoriel topologique”, J. Fac. Sci. Univ. Tokyo, Sec.I., 8 (1959), 111138.Google Scholar
[6]Kelley, J.L., General topology, (Toronto – New York – London 1957).Google Scholar
[7]Kuratowski, K., Topology, Vol. II, (New York – London – Warszawa 1968).Google Scholar
[8]Lakshmikantham, V., “Existence and comparison results for Volterra integral equations in a Banach space”, Lecture Notes in Math. 737 (1979), 120126.CrossRefGoogle Scholar
[9]Sadovskii, B.N., “Limit-compact and condensing operators”, Russian Math. Surveys, 27 (1972), 85155.CrossRefGoogle Scholar
[10]Szufla, S., “On the existence of solutions of Volterra integral equations in Banach spaces”, Bull. Acad. Polon. Sci. Ser. Sci. Math. 22 (1974), 12091213.Google Scholar
[11]Szufla, S., “On Volterra integral equations in Banach spaces”, Funkcial. Ekvac. 20 (1977), 247258.Google Scholar
[12]Szufla, S., “Sets of fixed points of nonlinear mappings in function spaces”, Funkcial. Ekvac. 22 (1979), 121126.Google Scholar
[13]Vaughn, R.L., “Criteria for the existence and comparison of solutions to nonlinear Volterra integral equations in Banach spaces”, Nonlinear Equations in Abstract Spaces, ed. Lakshmikantham, V. (New York 1978), 463468.CrossRefGoogle Scholar
[14]Vidossich, G., “A fixed point theorem for function spaces”, J. Math. Anal. Appl. 36 (1971), 581587.CrossRefGoogle Scholar