Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-24T00:59:11.197Z Has data issue: false hasContentIssue false

ON THE GOWERS NORM OF PSEUDORANDOM BINARY SEQUENCES

Published online by Cambridge University Press:  13 March 2009

HARALD NIEDERREITER
Affiliation:
Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore 117543, Republic of Singapore (email: [email protected])
JOËL RIVAT*
Affiliation:
Institut de Mathématiques de Luminy, CNRS-UMR 6206, Université de la Méditerranée, 163 avenue de Luminy, Case 907, 13288 Marseille Cedex 9, France (email: [email protected])
*
For correspondence; e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the Gowers norm for periodic binary sequences and relate it to correlation measures for such sequences. The case of periodic binary sequences derived from inversive pseudorandom numbers is considered in detail.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2009

References

[1] Goubin, L., Mauduit, Ch. and Sárközy, A., ‘Construction of large families of pseudorandom binary sequences’, J. Number Theory 106 (2004), 5669.CrossRefGoogle Scholar
[2] Gowers, W. T., ‘A new proof of Szemerédi’s theorem’, Geom. Funct. Anal. 11 (2001), 465588.Google Scholar
[3] Mauduit, Ch., Niederreiter, H. and Sárközy, A., ‘On pseudorandom [0, 1) and binary sequences’, Publ. Math. Debrecen 71 (2007), 305324.CrossRefGoogle Scholar
[4] Mauduit, Ch. and Sárközy, A., ‘On finite pseudorandom binary sequences I: Measure of pseudorandomness, the Legendre symbol’, Acta Arith. 82 (1997), 365377.CrossRefGoogle Scholar
[5] Moreno, C. J. and Moreno, O., ‘Exponential sums and Goppa codes: I’, Proc. Amer. Math. Soc. 111 (1991), 523531.Google Scholar
[6] Niederreiter, H., Random Number Generation and Quasi-Monte Carlo Methods (SIAM, Philadelphia, PA, 1992).CrossRefGoogle Scholar
[7] Niederreiter, H. and Rivat, J., ‘On the correlation of pseudorandom numbers generated by inversive methods’, Monatsh. Math. 153 (2008), 251264.CrossRefGoogle Scholar
[8] Niederreiter, H., Rivat, J. and Sárközy, A., ‘Pseudorandom sequences of binary vectors’, Acta Arith. 133 (2008), 109125.CrossRefGoogle Scholar
[9] Niederreiter, H. and Shparlinski, I. E., ‘Recent advances in the theory of nonlinear pseudorandom number generators’, in: Monte Carlo and Quasi-Monte Carlo Methods 2000 (Springer, Berlin, 2000), pp. 86102.Google Scholar
[10] Niederreiter, H. and Winterhof, A., ‘Incomplete exponential sums over finite fields and their applications to new inversive pseudorandom number generators’, Acta Arith. 93 (2000), 387399.CrossRefGoogle Scholar
[11] Niederreiter, H. and Winterhof, A., ‘On the structure of inversive pseudorandom number generators’, in: AAECC 2007, Lecture Notes in Computer Science, 4851 (Springer, Berlin, 2007), pp. 208216.Google Scholar