Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-20T03:32:00.733Z Has data issue: false hasContentIssue false

On the embedding of processes in Brownian motion and the law of the iterated logarithm for reverse martingales

Published online by Cambridge University Press:  17 April 2009

D.J. Scott
Affiliation:
Department of Mathematical Statistics, La Trobe University, Bundoora, Victoria 3083, Australia.
R.M. Huggins
Affiliation:
Department of Mathematical Statistics, La Trobe University, Bundoora, Victoria 3083, Australia.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Techniques from martingale theory are used to obtain the Skorokhod embedding of reverse martingales in Brownian motion. This result is then used to obtain a functional law of the iterated logarithm for reverse martingales.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1983

References

[1]Dubins, Lester E., “On a theorem of Skorokhod”, Ann. Math. Statist. 39 (1968), 20942097.CrossRefGoogle Scholar
[2]Dunford, Nelson and Schwartz, Jacob T., Linear operators. Part I: General theory (Pure and Applied Mathematics, 7. Interscience, New York, London, 1958).Google Scholar
[3]Hall, P.G. and Heyde, C.C., “On a unified approach to the law of the iterated logarithm for martingales”, Bull. Austral. Math. Soc. 14 (1976), 435447.CrossRefGoogle Scholar
[4]Heath, David, “Interpolation of martingales”, Ann. Probab. 5 (1977), 804806.CrossRefGoogle Scholar
[5]Heyde, C.C., “On a central limit and iterated logarithm supplements to the martingale convergence theorem”, J. Appl. Probab. 14 (1977), 758775.CrossRefGoogle Scholar
[6]Heyde, C.C. and Scott, D.J., “Invariance principles for the law of the iterated logarithm for martingales and processes with stationary increments”, Ann. Probab. 1 (1973), 428436.CrossRefGoogle Scholar
[7]Knight, Frank B., “A reduction of continuous square-integrable martingales to Brownian motion”, Martingales, 1931 (A report on a meeting at Oberwolfach, May, 1970. Lecture Notes in Mathematics, 190. Springer-Verlag, Berlin, Heidelberg, New York, 1971).CrossRefGoogle Scholar
[8]Kunita, Hiroshi and Watanabe, Shinzo, “On square integrable martingales”, Nagoya Math. J. 30 (1967), 209245.CrossRefGoogle Scholar
[9]Loynes, R.M., “Stopping times on Brownian motion: some properties of Root's construction”, Z. Wahrsch. Verw. Gebiete 16 (1970), 211218.CrossRefGoogle Scholar
[10]Meyer, P.A., “Intégrales stochastiques”, Séminaire de Probabilités I, 7294 (Université de Strasbourg, 1966–1967. Lecture Notes in Mathematics, 39. Springer-Verlag, Berlin, Heidelberg, New York, 1967).Google Scholar
[11]Miller, P. Warwick, “Martingale integrals”, Trans. Amer. Math. Soc. 133 (1968), 145166.CrossRefGoogle Scholar
[12]Root, D.H., “The existence of certain stopping times on Brownian motion”, Ann. Math. Statist. 40 (1969), 715718.CrossRefGoogle Scholar
[13]Scott, D.J., “Central limit theorems for martingales and for processes with stationary increments using a Skorokhod representation approach”, Adv. Appl. Probab. 5 (1973), 119137.CrossRefGoogle Scholar
[14]Stout, William F., Almost sure convergence (Probability and Mathematical Statistics, 24. Academic Press [Harcourt Brace Jovanovich], New York, London, 1974).Google Scholar
[15]Strassen, Volker, “An invariance principle for the law of the iterated logarithm”, Z. Wahrsch. Verw. Gebiete 3 (1964), 211226.CrossRefGoogle Scholar
[16]Strassen, Volker, “Almost sure behaviour of sums of independent random variables and martingales”, Proc. Fifth Berkeley Sympos. Math. Statist, and Probability, Volume II, Contributions to probability theory, Part 1, 315343 (University of California Press, Berkeley, 1967).Google Scholar