Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T02:53:04.069Z Has data issue: false hasContentIssue false

On the boundary spectrum in banach algebras

Published online by Cambridge University Press:  17 April 2009

S. Mouton
Affiliation:
Department of Mathematical Sciences, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We investigate some properties of the set S(a) = {λ ∈ ℂ: λ – a ∈ ∂S} (which we call the boundary spectrum of a) where ∂S denotes the topological boundary of the set S of all non-invertible elements of a Banach algebra A, and where a is an element of A.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2006

References

[1]Aupetit, B., A primer on spectral theory (Springer–Verlag, New York, 1991).CrossRefGoogle Scholar
[2]Bonsall, F.F. and Duncan, J., Complete normed algebras (Springer–Verlag, New York, 1973).Google Scholar
[3]Halmos, P.R., A Hilbert space problem book (Springer–Verlag, New York, 1982).Google Scholar
[4]du, H.Mouton, T. and Mouton, S., ‘Domination properties in ordered Banach algebras’, Studia Math. 149 (2002), 6373.Google Scholar
[5]Mouton, S., ‘Convergence properties of positive elements in Banach algebras’, Math. Proc. R. Ir. Acad. 102A (2002), 149162.Google Scholar
[6]Mouton, S., ‘A spectral problem in ordered Banach algebras’, Bull. Austral. Math. Soc. 67 (2003), 131144.CrossRefGoogle Scholar
[7]Mouton, S., ‘On spectral continuity of positive elements’, Studia Math. 174 (2006), 7584.Google Scholar
[8]Mouton, S. (née Rode) and Raubenheimer, H., ‘More spectral theory in ordered Banach algebras’, Positivity 1 (1997), 305317.Google Scholar
[9]Raubenheimer, H. and Rode, S., ‘Cones in Banach algebras’, Indag. Math. (N.S.) 7 (1996), 489502.CrossRefGoogle Scholar
[10]Taylor, A.E. and Lay, D.C., Introduction to functional analysis (Krieger, Florida, 1986).Google Scholar