Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-08T08:28:40.825Z Has data issue: false hasContentIssue false

On the area of planar convex sets containing many lattice points

Published online by Cambridge University Press:  17 April 2009

P. R. Scott
Affiliation:
Department of Mathematics, University of Adelaide, Adelaide, South Australia, Australia.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A classical theorem of van der Corput gives a bound for the volume of a symmetric convex set in terms of the number of lattice points it contains. This theorem is here generalized and extended for a large class of non-symmetric sets in the plane.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1987

References

[1]Arkinstall, J., Generalizations of Minkowski's theorem in the plane, (Ph.D. thesis, University of Adelaide, South Australia, 1982).Google Scholar
[2]van der Corput, J.G., “Verallgemeinerung einer Mordellschen Beweismethode in der Geometrie der Zahlen”, Acta Arithmetica 2 (1936), 145146.CrossRefGoogle Scholar
[3]Nosarzewska, M., “Évaluation de la différence entre l'aire d'une region plane convexe et la nombre des points aux coordonnées entières couverte par elle”, Colloq. Math. 1 (1947), 305311.CrossRefGoogle Scholar
[4]Pick, G., “Geometrisches zur Zahlenlahre”, Sitzungsber Lotos Prag. (2) 19 (1900), 311319.Google Scholar
[5]Scott, P.R., “An analogue of Minkowski's theorem in the plane”, J. London Math. Soc. 8 (1974), 647651.CrossRefGoogle Scholar