No CrossRef data available.
Article contents
On Terai's conjecture concerning Pythagorean numbers
Published online by Cambridge University Press: 17 April 2009
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
In this paper we prove that if a, b, c, r are fixed positive integers satisfying a2 + b2 = cr, gcd(a, b) = 1, a ≡ 3(mod 8), 2 | b, r > 1, 2 ∤ r, and c is a (x,y,z) = (2, 2,r) satisfying x > 1, y > 1 and z > 1.
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Society 2000
References
REFERENCES
[1]Laurent, M., Mignotte, M., and Nesterenko, Y., ‘Formes linéaries en deux logarithmes et déterminants d'interpolation’, J. Number Theory 55 (1995), 285–321.CrossRefGoogle Scholar
[2]Le, M.-H., ‘A note on the generalized Ramanujan-Nagell equation’, J. Number Theory 50 (1995), 193–201.CrossRefGoogle Scholar
[3]Le, M.-H., ‘A note on the diophantine equation (m 3 − 3m)x + (3m 2 − 1)y = (m 2 + 1)z’, Proc. Japan Acad. Ser. A Math. Sci 73 (1997), 148–149.Google Scholar
[5]Terai, N., ‘The diophantine equation ax + by = cz’, Proc. Japan Acad. Ser. A. Math. Sci 70 (1994), 22–26.Google Scholar
[6]Terai, N., ‘The diophantine equation ax + by = cz II’, Proc. Japan Acad. Ser. A. Math. Sci 71 (1995), 109–110.CrossRefGoogle Scholar
[7]Terai, N., ‘The diophantine equation ax + by = cz III’, Proc. Japan Acad. Ser. A. Math. Sci 72 (1996), 20–22.CrossRefGoogle Scholar
[8]Terai, N., ‘Applications of a lower bound for linear forms in two logarithms to exponential diophantine equations’ (to appear).Google Scholar
You have
Access