No CrossRef data available.
Published online by Cambridge University Press: 17 April 2009
In this paper we prove that if a, b, c, r are fixed positive integers satisfying a2 + b2 = cr, gcd(a, b) = 1, a ≡ 3(mod 8), 2 | b, r > 1, 2 ∤ r, and c is a (x,y,z) = (2, 2,r) satisfying x > 1, y > 1 and z > 1.