Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T02:37:36.263Z Has data issue: false hasContentIssue false

On Sturmian and episturmian words, and related topics

Published online by Cambridge University Press:  17 April 2009

Amy Glen
Affiliation:
Discipline of Pure MathematicsSchool of Mathematical SciencesThe University of AdelaideSouth Australia, 5005Australia e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Abstract
Copyright
Copyright © Australian Mathematical Society 2006

References

[1]Adamczewski, B. and Bugeaud, Y., ‘On the complexity of algebraic numbers, II. Continued fractions’, Acta Math. 195 (2005), 120.CrossRefGoogle Scholar
[2]Allouche, J.-P., Davison, J.L., Queffélec, M. and Zamboni, L.Q., ‘Transcendence of Sturmian or morphic continued fractions’, J. Number Theory 91 (2001), 3966.CrossRefGoogle Scholar
[3]Allouche, J.-P., Baake, M., Cassaigne, J. and Damanik, D., ‘Palindrome complexity’, Theoret. Comput. Sci. 292 (2003), 931.CrossRefGoogle Scholar
[4]Allouche, J.-P. and Shallit, J., Automatic sequences: theory, applications, generalizations (Cambridge University Press, Cambridge U.K., 2003).CrossRefGoogle Scholar
[5]Arnoux, P. and Rauzy, G., ‘Représentation géométrique de suites de complexité 2n + 1’, Bull. Soc. Math. France 119 (1991), 199215.CrossRefGoogle Scholar
[6]Berstel, J., ‘Axel Thue's work on repetitions in words’, in Proceedings of the 4th International Conference on Formal Power Series and Algebraic Combinatorics, Montréal 11, Publications du LaCIM (Université du Québec à, Montréal, 1992), pp. 6580.Google Scholar
[7]Berstel, J., ‘Recent results on Sturmian words’, in Developments in Language Theory, Magdeburg 1995, (Dassow, J., Salomaa, A., Editors) (World Scientific, Singapore, 1996).Google Scholar
[8]Berstel, J., ‘On the index of Sturmian words’, in Jewels Are Forever (Springer-Verlag, Berlin, 1999), pp. 287294.CrossRefGoogle Scholar
[9]Berstel, J., ‘Recent results on extensions Sturmian words’, Internat. J. Algebra Comput. 12 (2002), 371385.CrossRefGoogle Scholar
[10]Berstel, J. and de Luca, A., ‘Sturmian words, Lyndon words and trees’, Theoret. Comput. Sci. 178 (1997), 171203.CrossRefGoogle Scholar
[11]Berstel, J. and Séébold, P., ‘A characterization of Sturmian morphisms’, in Mathematical Foundations of Computer Science 1993, (Borzyszkowski, A.M., Sokolowski, S., Editors), Lecture Notes in Computer Science 711 (Springer-Verlag, Berlin, 1993), pp. 281290.CrossRefGoogle Scholar
[12]Berstel, J. and Séébold, P., ‘Sturmian words’, in Algebraic combinatorics on words, Encyclopedia of Mathematics and its Applications 90 (Cambridge University Press, Cambridge U.K., 2002), pp. 45110.Google Scholar
[13]Berthé, V., Holton, C. and Zamboni, L.Q., ‘Initial powers of Sturmian words’, Acta Arith. (to appear).Google Scholar
[14]Borel, J.-P. and Reutenauer, C., ‘Palindromic factors of billiard words’, Theoret. Comput. Sci. 340 (2005), 334348.CrossRefGoogle Scholar
[15]Brlek, S., Hamel, S., Nivat, M. and Reutenauer, C., ‘On the palindromic complexity of infinite words’, Internat. J. Found. Comput. Sci. 15 (2004), 293306.CrossRefGoogle Scholar
[16]Brown, T.C., ‘Descriptions of the characteristic sequence of an irrational’, Canad. Math. Bull. 36 (1993), 1521.CrossRefGoogle Scholar
[17]Chuan, W.-F., ‘Symmetric Fibonacci words’, Fibonacci Quart. 31 (1993), 251255.Google Scholar
[18]Damanik, D. and Lenz, D., ‘The index of Sturmian sequences’, European J. Combin. 23 (2002), 2329.CrossRefGoogle Scholar
[19]de Luca, A., ‘A combinatorial property of the Fibonacci words’, Inform. Process. Lett. 12 (1981), 193195.CrossRefGoogle Scholar
[20]de Luca, A., ‘A division property of the Fibonacci word’, Inform. Process. Lett. 54 (1995), 307312.CrossRefGoogle Scholar
[21]de Luca, A. and Mignosi, F., ‘Some combinatorial properties of Sturmian words’, Theoret. Comput. Sci. 136 (1994), 361385.CrossRefGoogle Scholar
[22]Droubay, X., Justin, J. and Pirillo, G., ‘Episturmian words and some constructions of de Luca and Rauzy’, Theoret. Comput. Sci. 255 (2001), 539553.CrossRefGoogle Scholar
[23]Droubay, X. and Pirillo, G., Palindromes and Sturmian words, Theoret. Comput. Sci. 223 (1999), 7385.CrossRefGoogle Scholar
[24]Glen, A., ‘Conjugates of characteristic Sturmian words generated by morphisms’, European J. Combin. 25 (2004), 10251037.CrossRefGoogle Scholar
[25]Glen, A., ‘Powers in a class of, A-strict standard episturmian words’, in Words 2005, 5thInternational Conference on Word, Publications du LaCIM 36 (Université du Québec à Montréal, 2005), pp. 249263.Google Scholar
[26]Glen, A., ‘Occurrences of palindromes in characteristic Sturmian words’, Theoret. Comput. Sci. 352 (2006), 3146.CrossRefGoogle Scholar
[27]Justin, J., ‘Episturmian morphisms and a Galois theorem on continued fractions’, Theor. Inform. Appl. 39 (2005), 207215.CrossRefGoogle Scholar
[28]Justin, J., Pirillo, G., ‘Fractional powers in Sturmian words’, Theoret. Comput. Sci. 255 (2001), 363376.CrossRefGoogle Scholar
[29]Justin, J. and Pirillo, G., ‘Episturmian words and episturmian morphisms’, Theoret. Comput. Sci. 276 (2002), 281313.CrossRefGoogle Scholar
[30]Justin, J. and Pirillo, G., ‘Episturmian words: shifts, morphisms and numeration systems’, Internat J. Found. Comput. Sci. 15 (2004), 329348.CrossRefGoogle Scholar
[31]Levé, F. and Séébold, P., ‘Conjugation of standard morphisms and a generalization of singular words’, Bull. Belg. Math. Soc. Simon Stevin 10 (2003), 737747.CrossRefGoogle Scholar
[32]Mignosi, F. and Pirillo, G., ‘Repetitions in the Fibonacci infinite word’, Theor. Inform. Appl. 26 (1992), 199204.CrossRefGoogle Scholar
[33]Morse, M. and Hedlund, G.A., ‘Symbolic dynamics II: Sturmian trajectories’, Amer. J. Math. 62 (1940), 142.CrossRefGoogle Scholar
[34]Pirillo, G., ‘Inequalities characterizing standard Sturmian and episturmian words’, Theoret. Comput. Sci. 341 (2005), 276292.CrossRefGoogle Scholar
[35]Fogg, N. Pytheas, Substitutions in dynamics, arithmetics and combinatorics, Lecture Notes in Mathematics 1794 (Springer-Verlag, Berlin, 2002).CrossRefGoogle Scholar
[36]Rauzy, G., ‘Nombres algébriques et substitutions’, Bull. Soc. Math. France 110 (1982), 147178.CrossRefGoogle Scholar
[37]Vandeth, D., ‘Sturmian words and words with a critical exponent’, Theoret. Comput. Sci. 242 (2000), 283300.CrossRefGoogle Scholar
[38]Venkov, B.A., Elementary number theory (Wolters-Noordhoff, Netherlands, 1970).Google Scholar
[39]Wen, Z.-X. and Wen, Z.-Y., ‘Some properties of the singular words of the Fibonacci word’, European J. Combin. 15 (1994), 587598.Google Scholar