Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T02:51:22.335Z Has data issue: false hasContentIssue false

ON REGULAR SUBGROUPS OF THE AFFINE GROUP

Published online by Cambridge University Press:  08 October 2014

FRANCESCO CATINO*
Affiliation:
Dipartimento di Matematica e Fisica ‘Ennio De Giorgi’, Università del Salento, Via Provinciale Lecce-Arnesano, 73100 Lecce, Italy email [email protected]
ILARIA COLAZZO
Affiliation:
Dipartimento di Matematica e Fisica ‘Ennio De Giorgi’, Università del Salento, Via Provinciale Lecce-Arnesano, 73100 Lecce, Italy email [email protected]
PAOLA STEFANELLI
Affiliation:
Dipartimento di Matematica e Fisica ‘Ennio De Giorgi’, Università del Salento, Via Provinciale Lecce-Arnesano, 73100 Lecce, Italy email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Catino and Rizzo [‘Regular subgroups of the affine group and radical circle algebras’, Bull. Aust. Math. Soc.79 (2009), 103–107] established a link between regular subgroups of the affine group and the radical brace over a field on the underlying vector space. We propose new constructions of radical braces that allow us to obtain systematic constructions of regular subgroups of the affine group. In particular, this approach allows to put in a more general context the regular subgroups constructed in Tamburini Bellani [‘Some remarks on regular subgroups of the affine group’ Int. J. Group Theory, 1 (2012), 17–23].

Type
Research Article
Copyright
Copyright © 2014 Australian Mathematical Publishing Association Inc. 

References

Aczél, J., On Applications and Theory of Functional Equations (Academic Press, New York, 1969).Google Scholar
Agore, A. L. and Militaru, G., The extending structures problem for algebras. Preprint, arXiv:1305.6022v3.Google Scholar
Caranti, A., Dalla Volta, F. and Sala, M., ‘Abelian regular subgroups of the affine group and radical rings’, Publ. Math. Debrecen 69 (2006), 297308.Google Scholar
Catino, F. and Rizzo, R., ‘Regular subgroups of the affine group and radical circle algebras’, Bull. Aust. Math. Soc. 79 (2009), 103107.CrossRefGoogle Scholar
Cedó, F., Jespers, E. and Okniński, J., ‘Brace and Yang–Baxter equation’, Comm. Math. Phys. 327 (2014), 101116.CrossRefGoogle Scholar
de Graaf, W. A., Classification of nilpotent associative algebras of small dimension. arXiv:1009.5339v1.Google Scholar
Featherstonhaugh, S. C., Caranti, A. and Childs, L. N., ‘Abelian Hopf Galois structures on prime-power Galois field extensions’, Trans. Amer. Math. Soc. 364 (2012), 36753684.Google Scholar
Hegedűs, P., ‘Regular subgroups of the affine group’, J. Algebra 225 (2000), 740742.Google Scholar
Hochschild, G., ‘Cohomology and representations of associative algebras’, Duke Math. J. 14 (1947), 921948.CrossRefGoogle Scholar
Liebeck, M. W., Praeger, C. E. and Saxl, J., ‘Transitive subgroups of primitive permutation groups’, J. Algebra 234 (2000), 291361.CrossRefGoogle Scholar
Liebeck, M. W., Praeger, C. E. and Saxl, J., ‘Regular subgroups of primitive permutation groups’, Mem. Amer. Math. Soc. 203 (2009).Google Scholar
Matsumoto, D. K., ‘Dynamical braces and dynamical Yang–Baxter maps’, J. Pure Appl. Algebra 217 (2013), 195206.Google Scholar
Pierce, R. S., Associative Algebras (Springer, New York, 1982).Google Scholar
Rump, W., ‘Braces, radical rings, and the quantum Yang–Baxter equation’, J. Algebra 307 (2007), 153170.Google Scholar
Rump, W., ‘Semidirect products in algebraic logic and solutions of the quantum Yang–Baxter equation’, J. Algebra Appl. 7 (2008), 471490.CrossRefGoogle Scholar
Rump, W., ‘The brace of a classical group’, Note Mat. 34(1) (2014), 115147.Google Scholar
Tamburini Bellani, M. C., ‘Some remarks on regular subgroups of the affine group’, Int. J. Group Theory 1 (2012), 1723.Google Scholar