Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-10T20:41:35.880Z Has data issue: false hasContentIssue false

ON p-SOLVABILITY AND AVERAGE CHARACTER DEGREE IN A FINITE GROUP

Published online by Cambridge University Press:  27 July 2023

ESMAEEL ESKANDARI
Affiliation:
Department of Pure Mathematics, Faculty of Mathematical Sciences, Shahrekord University, P.O. Box 115, Shahrekord, Iran e-mail: [email protected]
NEDA AHANJIDEH*
Affiliation:
Department of Pure Mathematics, Faculty of Mathematical Sciences, Shahrekord University, P.O. Box 115, Shahrekord, Iran e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Assume that G is a finite group, N is a nontrivial normal subgroup of G and p is an odd prime. Let $\mathrm{Irr}_p(G)=\{\chi \in \mathrm{Irr}(G) : \chi (1)=1~\mathrm{or}~ p \mid \chi (1)\}$ and $\mathrm{Irr}_p(G|N)=\{\chi \in \mathrm{Irr}_p(G) : N \not \leq \mathrm{ker}\,\chi \}$. The average character degree of irreducible characters of $\mathrm{Irr}_p(G)$ and the average character degree of irreducible characters of $\mathrm{Irr}_p(G|N)$ are denoted by $\mathrm{acd}_p(G)$ and $\mathrm{acd}_p(G|N)$, respectively. We show that if $\mathrm{Irr}_p(G|N) \neq \emptyset $ and $\mathrm{acd}_p(G|N) < \mathrm{acd}_p(\mathrm{PSL}_2(p))$, then G is p-solvable and $O^{p'}(G)$ is solvable. We find examples that make this bound best possible. Moreover, we see that if $\mathrm{Irr}_p(G|N) = \emptyset $, then N is p-solvable and $P \cap N$ and $PN/N$ are abelian for every $P \in \mathrm{Syl}_p(G)$.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

1 Introduction

In this paper, G is a finite group and p is a prime divisor of $|G|$ . Let $\mathrm{Irr}(G)$ denote the set of (complex) irreducible characters of G. For a normal subgroup N of G and $\theta \in \mathrm{Irr}(N)$ , let $\mathrm{Irr}(G|N) = \{\chi \in \mathrm{Irr}(G) : N \not \leq \mathrm{ker}\,\chi \}$ and $\mathrm{Irr}(\theta ^G)$ denote the set of the irreducible constituents of the induced character $\theta ^G$ . The average character degree of G is denoted by $\mathrm{acd}(G)$ (see [Reference Moretó and Nguyen5, Reference Qian8]) and it is defined by

$$ \begin{align*}\mathrm{acd}(G) =\frac{ \Sigma_{\chi \in \mathrm{Irr}(G)}\chi(1)}{|\mathrm{Irr}(G)|}.\end{align*} $$

By $\mathrm{acd}(G|N)$ , we mean the average character degree of the irreducible characters in $\mathrm{Irr}(G|N)$ (see [Reference Akhlaghi3]). In [Reference Ahanjideh1], it has been shown that if $\mathrm{acd}(G|N) < \mathrm{\max }(\mathrm{acd}(\mathrm{PSL}_2(p)),16/5)$ , then G is p-solvable.

We write

$$ \begin{align*} \mathrm{Irr}_p(G)&=\{\chi \in \mathrm{Irr}(G): \chi(1)=1 ~\mathrm{or}~ p \mid \chi(1) \}\\ \mathrm{Irr}_p(G|N)&= \mathrm{Irr}_p(G) \cap \mathrm{Irr}(G|N) \\ \mathrm{Irr}_p(\theta^G)&=\mathrm{Irr}_p(G) \cap \mathrm{Irr}(\theta^G) \quad \mbox{for every } \theta \in \mathrm{Irr}(N). \end{align*} $$

Let $\mathrm{acd}_p(G)$ , $\mathrm{acd}_p(G|N)$ and $\mathrm{acd}_p(\theta ^G)$ be the average degree of irreducible characters belonging to $\mathrm{Irr}_p(G)$ , $\mathrm{Irr}_p(G|N)$ and $\mathrm{Irr}_p(\theta ^G)$ , respectively. For $\Delta \subseteq \mathrm{Irr}(G)$ ,

$$ \begin{align*} \mathrm{acd}_p(\Delta)=\frac{\Sigma_{ \chi \in \Delta \cap \mathrm{Irr}_p(G)}\chi(1)}{|\Delta \cap \mathrm{Irr}_p(G)|}. \end{align*} $$

Nguyen and Tiep [Reference Nguyen and Tiep7] have shown that if either $p \geq 5$ and $\mathrm{acd}_p(G) <\mathrm{acd}_p(\mathrm{PSL}_2(p))$ or $p \in \{2,3\}$ and $\mathrm{acd}_p(G) <\mathrm{acd}_p(\mathrm{PSL}_2(5))$ , then G is p-solvable and $O^{p'}(G)$ is solvable, where $O^{p'}(G)$ is the minimal normal subgroup of G whose quotient is a $p'$ -group. Akhlaghi [Reference Akhlaghi2] proved that if N is a nontrivial normal subgroup of G with $\mathrm{Irr}_2(G|N) \neq \emptyset $ and $\mathrm{acd}_2(G|N) <5/2$ , then G is solvable.

We continue this investigation and show that considering the appropriate bound for $\mathrm{acd}_p(G|N)$ instead of $\mathrm{acd}_p(G)$ leads us to the p-solvability of G.

Let $f(p)=\mathrm{acd}_p(\mathrm{PSL}_2(p))$ if $p \geq 5$ and otherwise, let $f(p)=\mathrm{acd}_p(\mathrm{PSL}_2(5))$ . So,

$$ \begin{align*} f(p)=\left\{\begin{array}{ll} (p+1)/2 & \text{if } p \geq 5,\\ 7/3 & \text{if } p=3,\\ 5/2 & \text{if } p=2. \end{array} \right. \end{align*} $$

Theorem 1.1. Let $ 1 \neq N \unlhd G $ and $p $ be an odd prime divisor of $|G|$ . If $G/N$ is not p-solvable, then $\mathrm{acd}_p(\lambda ^G) \geq f(p)$ for every $\lambda \in \mathrm{Irr}(N)$ with $\mathrm{Irr}_p(\lambda ^G) \neq \emptyset $ .

Theorem 1.2. Let p be an odd prime and $1 \neq N \unlhd G$ with $\mathrm{acd}_p(G | N)<f(p)$ . Then:

  1. (i) either G is p-solvable and $O^{p'}(G)$ is solvable;

  2. (ii) or $\mathrm{Irr}_p(G|N)=\emptyset $ , N is p-solvable and for every $P \in \mathrm{Syl}_p(G)$ , $P \cap N$ and $PN/N$ are abelian.

Example 1.3. Let N be a cyclic group of order $2$ , $p $ be an odd prime and let $G=\mathrm{PSL}_2(p) \times N$ . If $p \geq 5$ , then $\mathrm{acd}_p(G|N)=\mathrm{acd}_p(\mathrm{PSL}_2(p))$ . Also, if $p=5$ , then $\mathrm{acd}_3(G|N)=\mathrm{acd}_3(\mathrm{PSL}_2(5))$ . This example shows that the bound given in Theorem 1.2 is the best possible.

Let $\mathrm{Irr}_p(G^{\sharp }) = \mathrm{Irr}_p(G)-\{1_G \}$ and $\mathrm{acd}(G^{\sharp }) ={\Sigma _{\chi \in \mathrm{Irr}_p(G^{\sharp })} \chi (1) }/{|\mathrm{Irr}_p(G^{\sharp })|}$ . By setting $G=N$ in Theorem 1.2, we arrive at the following corollary.

Corollary 1.4. If $\mathrm{acd}_p(G^{\sharp })<f(p) $ , then G is p-solvable and $O^{p'}(G)$ is solvable.

We can see that $\mathrm{acd}_3(\mathrm{Alt}_4^{\sharp })=5/3<7/3 $ and the Sylow $3$ -subgroup of $\mathrm{Alt}_4$ is not normal in $\mathrm{Alt}_4$ . This shows that the assumption $\mathrm{acd}_p(G^{\sharp })<f(p) $ does not guarantee normality of the Sylow p-subgroup of G.

2 The main results

We first state some lemmas that will be used in the proof of Theorems 1.1 and 1.2. For a nonempty finite subset of real numbers X, by $\mathrm{ave}(X)$ , we mean the average of X.

Lemma 2.1 [Reference Ahanjideh1, Lemma 3].

Let X be a nonempty finite subset of real numbers and $\{A_1,\ldots ,A_t\}$ be a partition of X. If d is a real number such that $\mathrm{ave}( A_i) \geq d$ (respectively $<d$ ) for $1 \leq i \leq t$ , then $\mathrm{ave}( X) \geq d$ (respectively $<d$ ).

Lemma 2.2 [Reference Nguyen and Tiep7, Theorem B].

Let p be a prime divisor of $|G|$ . If $\mathrm{acd}_p(G) < f(p)$ , then G is p-solvable and $O^{p'}(G)$ is solvable.

Lemma 2.3 [Reference Navarro and Tiep6, Theorem A].

Let Z be a normal subgroup of a finite group G, $ \lambda \in \mathrm{Irr}(Z)$ and let $P/Z \in \mathrm{Syl}_p(G/Z)$ . If $ \chi (1)/\lambda (1)$ is coprime to p for every $ \chi \in \mathrm{Irr}(G)$ lying over $\lambda $ , then $P/Z$ is abelian.

We are ready to prove Theorems 1.1 and 1.2.

Proof of Theorem 1.1.

We complete the proof by induction on $|G|+|N|$ . Take $\lambda \in \mathrm{Irr}(N)$ with $\mathrm{Irr}_p(\lambda ^G) \neq \emptyset $ . Let E be a maximal normal subgroup of G such that $N \leq E$ and $G/E$ is not p-solvable. Then, $G/E$ admits the unique minimal normal subgroup $M/E$ and it is easy to check that $M/E$ is not p-solvable. Assume that $\{\mu _1, \ldots , \mu _t\} \subseteq \mathrm{Irr}(\lambda ^E)$ such that every element of $\mathrm{Irr}(\lambda ^E)$ is conjugate to exactly one of the elements in $\{\mu _1, \ldots , \mu _t\}$ . If $N \neq E$ , then from the hypothesis, $\mathrm{Irr}_p(\mu _i^G)=\emptyset $ or $\mathrm{acd}_p(\mu _i^G) \geq f(p)$ , for $1 \leq i \leq t$ . As $\mathrm{Irr}(\lambda ^G) =\dot {\cup }_{i=1}^t \mathrm{Irr}(\mu _i^G)$ and $\mathrm{Irr}_p(\lambda ^G) \neq \emptyset $ , we conclude that $\mathrm{Irr}_p(\mu _j^G) \neq \emptyset $ for some j with $1 \leq j \leq t$ . So, it follows from Lemma 2.1 that $\mathrm{acd}_p(\lambda ^G) \geq f(p) $ , as desired. Next, suppose that $N=E$ . If $\lambda $ is extendible to $\chi \in \mathrm{Irr}(G)$ , then Gallagher’s theorem [Reference Isaacs4, Corollary 6.17] implies that $\mathrm{Irr}(\lambda ^G)=\{\chi \mu : \mu \in \mathrm{Irr}(G/N)\}$ and for every $\mu _1,\mu _2 \in \mathrm{Irr}(G/N)$ with $\mu _1 \neq \mu _2$ , we have $\chi \mu _1 \neq \chi \mu _2$ . Thus, either $p \mid \chi (1)$ and $\mathrm{acd}_p(\lambda ^G)=\chi (1) \mathrm{acd}(G/N)$ or $p \nmid \chi (1)$ and $\mathrm{acd}_p(\lambda ^G)=\chi (1) \mathrm{acd}_p(G/N)$ . Obviously, $\mathrm{acd}(G/N) \geq 1$ . So, in the former case, $\mathrm{acd}_p(\lambda ^G) \geq p> f(p)$ , as needed. Since $G/N$ is not p-solvable, Lemma 2.2 yields $\mathrm{acd}_p(G/N) \geq f(p)$ . Hence, if $p \nmid \chi (1)$ , then $\mathrm{acd}_p(\lambda ^G)=\chi (1) \mathrm{acd}_p(G/N) \geq f(p)$ , as desired. Finally, suppose that $\lambda $ is not extendible to G. Then, for every $\chi \in \mathrm{Irr}(\lambda ^G)$ , $\chi (1)> \lambda (1) \geq 1$ . This means that $p \mid \chi (1) $ for every $\chi \in \mathrm{Irr}_p(\lambda ^G)$ . Therefore, $\mathrm{acd}_p(\lambda ^G) \geq p> f(p)$ . Now, the proof is complete.

Proof of Theorem 1.2.

First, assume that $\mathrm{Irr}_p(G|N) \neq \emptyset $ . As $\mathrm{acd}_p(G|N) < f(p) < p $ , we see that $\mathrm{Irr}_p(G|N)$ contains a linear character $\chi $ . Then, $\chi _N \neq 1_N $ and as $\chi (1)=1$ , we have $\chi _N \in \mathrm{Irr}(N)$ . This implies that N admits some linear characters which are extendible to G and they are nonprincipal. Assume that $\{\mu _1,\ldots , \mu _t\}$ is the set of all linear characters of N which are extendible to G and are nonprincipal. Since the $\mu_i$ s are extendible to G, none of them are G-conjugate. If $1 \leq i \neq j \leq t$ and there exists $\chi \in \mathrm{Irr}(\mu _i^G) \cap \mathrm{Irr}(\mu _j^G)$ , then $\mu _i$ and $\mu _j$ are irreducible constituents of $\chi _N$ . It follows from Clifford’s correspondence that $\mu _i$ and $\mu _j$ are G-conjugate, which is a contradiction with our former assumption on the $\mu _i$ s. This shows that

(2.1) $$ \begin{align} \mathrm{Irr}(\mu_i^G) \cap \mathrm{Irr}(\mu_j^G)=\emptyset \quad\mathrm{for~} 1 \leq i \neq j \leq t. \end{align} $$

Let $1 \leq i \leq t$ . Our assumption on the $\mu _i$ guarantees the existence of a linear character $\chi _i \in \mathrm{Irr}(G) $ such that $(\chi _i)_N=\mu _i$ . By Gallagher’s theorem [Reference Isaacs4, Corollary 6.17], $\mathrm{Irr}(\mu _i^G)=\{\chi _i \varphi : \varphi \in \mathrm{Irr}(G/N)\}$ and for distinct characters $\varphi _1,\varphi _2 \in \mathrm{Irr}(G/N)$ , $\chi _i\varphi _1 \neq \chi _i \varphi _2$ . Since  $\chi _i(1)=1$ ,

(2.2) $$ \begin{align} \mathrm{Irr}_p(\mu_i^G)=\{\chi_i \varphi: \varphi \in \mathrm{Irr}_p(G/N)\}. \end{align} $$

As $\mu _i \neq 1_N$ , $\chi _i \in \mathrm{Irr}(G|N)$ . Therefore,

$$ \begin{align*} \mathrm{Irr}_p(\mu_i^G) \subseteq \mathrm{Irr}_p(G|N). \end{align*} $$

In view of (2.1), $\bigcup _{i=1}^t\mathrm{Irr}(\mu _i^G)$ is disjoint. Take

$$ \begin{align*} \mathfrak{A}=\mathrm{Irr}_p(G|N) - \dot{\cup}_{i=1}^t\mathrm{Irr}(\mu_i^G). \end{align*} $$

If $\chi \in \mathrm{Irr}(G|N)$ is linear, then $\chi _N \neq 1_N$ and $\chi _N(1)=\chi (1)=1$ . Thus, $\chi _N \in \mathrm{Irr}(N)$ is nonprincipal. It follows from our assumption on the $\mu _i$ that $\chi _N \in \{\mu _1,\ldots , \mu _t\}$ . Therefore, $\chi \in \mathrm{Irr}(\mu _j^G)$ for some $1 \leq j \leq t$ . This implies that $\chi (1) \geq p$ for every $\chi \in \mathfrak {A}$ . Therefore,

(2.3) $$ \begin{align} \mathrm{acd}_p(\mathfrak{A}) \geq p> f(p). \end{align} $$

By (2.1) and (2.2), $|\dot {\cup }_{i=1}^t \mathrm{Irr}_p(\mu _i^G)|=t|\mathrm{Irr}_p(G/N)|$ and

$$ \begin{align*} \mathrm{acd}_p(\dot{\cup}_{i=1}^t \mathrm{Irr}(\mu_i^G))&= \frac{\Sigma_{i=1}^t \Sigma_{\chi \in \mathrm{Irr}_p(\mu_i^G)} \chi(1) }{|\dot{\cup}_{i=1}^t \mathrm{Irr}_p(\mu_i^G)|}\\ &= \frac{\Sigma_{i=1}^t \Sigma_{\varphi \in \mathrm{Irr}_p(G/N)} (\chi_i \varphi)(1)}{t|\mathrm{Irr}_p(G/N)|}\\\nonumber &= \frac{t \Sigma_{\varphi \in \mathrm{Irr}_p(G/N)} \varphi(1)}{t|\mathrm{Irr}_p(G/N)|}=\mathrm{acd}_p(G/N). \end{align*} $$

If $\mathrm{acd}_p(G/N) \geq f(p)$ , then

(2.4) $$ \begin{align} \mathrm{acd}_p(\dot{\cup}_{i=1}^t \mathrm{Irr}(\mu_i^G)) \geq f(p). \end{align} $$

Note that $\mathrm{Irr}_p(G|N) = (\dot {\cup }_{i=1}^t\mathrm{Irr}_p(\mu _i^G)) \dot {\cup } \mathfrak {A}$ . It follows from (2.3), (2.4) and Lemma 2.1 that $\mathrm{acd}_p(G|N) \geq f(p)$ , which is a contradiction. This implies that $\mathrm{acd}_p(G/N) <f(p)$ . As $\mathrm{acd}_p(G|N) < f(p)$ and $\mathrm{Irr}_p(G) =\mathrm{Irr}_p(G|N) \dot {\cup } \mathrm{Irr}_p(G/N)$ , we deduce from Lemma 2.1 that $\mathrm{acd}_p(G) < f(p)$ . Hence, Lemma 2.2 implies that G is p-solvable and $O^{p'}(G)$ is solvable, as desired.

Now, assume that $\mathrm{Irr}_p(G|N)=\emptyset $ . Working towards a contradiction, suppose that there exists $\theta \in \mathrm{Irr}(N) $ such that $p \mid \theta (1)$ . We have $\theta (1) \mid \chi (1)$ for every $\chi \in \mathrm{Irr}(\theta ^G)$ . Thus, $p \mid \chi (1)$ for every $\chi \in \mathrm{Irr}(\theta ^G)$ . Clearly, $\theta \neq 1_N$ . So, $\chi \in \mathrm{Irr}_p(\theta ^G) \subseteq \mathrm{Irr}_p(G|N) $ . This means that $\mathrm{Irr}_p(G|N) \neq \emptyset $ , which is a contradiction. This implies that $p \nmid \theta (1)$ for every $\theta \in \mathrm{Irr}(N)$ . It follows from the Ito–Michler theorem [Reference Isaacs4, Corollary 12.34] that N has a normal and abelian Sylow p-subgroup. Thus, N is p-solvable. Now, assume that $1_N \neq \theta \in \mathrm{Irr}(N)$ and $\chi \in \mathrm{Irr}(\theta ^G)$ . Hence, $\chi \in \mathrm{Irr}(G|N) $ . As $\mathrm{Irr}_p(G|N) = \emptyset $ , we deduce that $p \nmid \chi (1)$ . Thus, $p \nmid \chi (1)/\theta (1)$ . It follows from Lemma 2.3 that $G/N$ has an abelian Sylow p-subgroup. This completes the proof.

References

Ahanjideh, N., ‘The average character degree and $r$ -solvability of a normal subgroup’, Monatsh. Math. 200 (2023), 487493.CrossRefGoogle Scholar
Akhlaghi, Z., ‘On the average degree of linear and even degree characters of finite groups’, Ric. Mat. (to appear). Published online (14 November 2022).CrossRefGoogle Scholar
Akhlaghi, Z., ‘On the average degree of some irreducible characters of a finite group’, Math. Nachr. (to appear). Published online (8 March 2023).CrossRefGoogle Scholar
Isaacs, I. M., Character Theory of Finite Groups (Academic Press, New York, 1976).Google Scholar
Moretó, A. and Nguyen, H. N., ‘On the average character degree of finite groups’, Bull. Lond. Math. Soc. 46(3) (2014), 454462.CrossRefGoogle Scholar
Navarro, G. and Tiep, P. H., ‘Characters of relative ${p}^{\prime }$ -degree over normal subgroups’, Ann. of Math. (2) 178 (2013), 11351171.CrossRefGoogle Scholar
Nguyen, H. N. and Tiep, P. H., ‘The average character degree and an improvement of the Ito–Michler theorem’, J. Algebra 550 (2020), 86107.Google Scholar
Qian, G., ‘On the average character degree and the average class size in finite groups’, J. Algebra 423 (2015), 11911212.CrossRefGoogle Scholar