Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-03T18:45:48.151Z Has data issue: false hasContentIssue false

On products of Sobolev-Orlicz spaces

Published online by Cambridge University Press:  17 April 2009

J. Appell
Affiliation:
Mathematisches Institut, Universität Würzburg, Am Hubland D-8700 Würzsburg, Germany
G. Hardy
Affiliation:
School of External Studies and Continuing Education The University of Queensland, Queensland 4072, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We give conditions under which pointwise multiplication is a continuous bounded operation on kth order Sobolev-Orlicz spaces. This result is used to derive a sufficient condition under which the superposition operator is a continuous bounded operator on these spaces.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1990

References

[1]Adams, R.A., Sobolev spaces (Academic Press, New York, 1976).Google Scholar
[2]Ando¸, T., ‘On products of Orlicz spaces’, Math. Ann. 140 (1960), 174186.CrossRefGoogle Scholar
[3]Appell, J., Untersuchungen zur Theorie nichtlinearer Operatoren und Operatorgleichungen (Habilitationsschrift, Univ. Augsburg, 1985).Google Scholar
[4]Appell, J. and Zabrejko, P.P., ‘On the degeneration of the class of differentiable superposition operators in function spaces’, Analysis 7 (1987), 305312.CrossRefGoogle Scholar
[5]Appell, J. and Zabrejko, P.P., Nonlinear superposition operators (Cambridge University Press, Cambridge, 1989).Google Scholar
[6]Donaldson, T.K. and Trudinger, N.S., Orlicz-Sobolev spaces and imbedding theorems’, J. Funct. Anal. 8 (1971), 5275.CrossRefGoogle Scholar
[7]Gossez, J-P., ‘Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients’, Trans. Amer. Math. Soc. 190 (1974), 163205.CrossRefGoogle Scholar
[8]Hardy, G., ‘Extensions of theorems of Gagliardo and Marcus and Mizel to Orlicz spaces’, Bull. Austral. Math. Soc. 23 (1981), 121138.CrossRefGoogle Scholar
[9]Hardy, G., ‘Nemitsky operators between Orlicz-Sobolev spaces’, Bull. Austral. Math. Soc. 30 (1984), 251269.CrossRefGoogle Scholar
[10]Hardy, G., ‘Demicontinuity of Nemitsky operators on Orlicz-Sobolev spaces’, Bull. Austral. Math. Soc. 37 (1988), 2942.CrossRefGoogle Scholar
[11]Krasnosel'skiῐ, M.A. and Rutickii, Ya.B., Convex functions and Orlicz spaces, (Russian) (Fizmatgiz, Moscow, 1958). English translation (Noordhoff, Gronigen, 1961).Google Scholar
[12]Krein, S.G., Petunin, Ju.I. and Semenov, E.M., Interpolation of linear operators, (Russian) (Nauka, Moscow, 1978). English translation, Math. Monogr. Amer. Math. Soc. 54. Providence, 1982.Google Scholar
[13]Kufner, A., John, O. and Fuiik, S., Function spaces (Noordhoff Leyden, 1977).Google Scholar
[14]Marcus, M. and Mizel, V.J., ‘Absolute continuity on tracks and mappings of Sobolev spaces’, Arch. Rational Mech. Anal. 45 (1972), 294320.CrossRefGoogle Scholar
[15]Marcus, M. and Mizel, V.J., ‘Nemitsky operators on Sobolev spaces’, Arch. Rational Mech. Anal. 51 (1973), 347370.CrossRefGoogle Scholar
[16]Marcus, M. and Mizel, V.J., ‘Continuity of certain Nemitsky operators on Sobolev spaces and the chain rule’, J. Analyse Math 28 (1975), 303334.CrossRefGoogle Scholar
[17]Marcus, M. and Mizel, V.J., ‘Representation theorems for nonlinear disjointly additive functionals and operators on Sobolev spaces’, Trans. Amer. Math. Soc. 228 (1977), 145.CrossRefGoogle Scholar
[18]Marcus, M. and Mizel, V.J., ‘Superposition mappings which operate on Sobolev spaces’, Nonlinear Anal. TMA 2 (1978), 257258.CrossRefGoogle Scholar
[19]Marcus, M. and Mizel, V.J., ‘Every superposition operator mapping one Sobolev space into another is continuous’, J. Fund. Anal. 33 (1979), 217229.CrossRefGoogle Scholar
[20]Marcus, M. and Mizel, V.J., ‘Complete characterization of functions which act, via superposition, on Sobolev spaces’, Trans. Amer. Math. Soc. 251 (1979), 187218.CrossRefGoogle Scholar
[21]Marcus, M. and Mizel, V.J., ‘A characterization of first order non-linear partial differential operators on Sobolev spaces’, J. Fund. Anal. 38 (1980), 118138.CrossRefGoogle Scholar
[22]Maz'ya, V.G. and Shaposhnikova, T.O., ‘Multipliers of S.L. Sobolev spaces in a domain’, (Russian), Math. Nachr. 99 (1980), 165183.Google Scholar
[23]Maz'ya, V.G. and Shaposhnikova, T.O., Theory of multipliers in spaces of differentiable functions (Pitman, London, 1985).Google Scholar
[24]Moseenkov, V.B., ‘Composition of functions in Sobolev spaces’, (Russian), Ukrain. Mat. Zh. 34 (1982), 384388.CrossRefGoogle Scholar
[25]Valent, T., ‘A property of multiplication in Sobolev spaces: some applications’, Rend. Sem. Mat. Univ. Padova 74 (1985), 6373.Google Scholar
[26]Valent, T., Boundary value problems of finite elasticity - local theorems on existence, uniqueness and analytic dependence on data (Springer-Verlag, Berlin, Heidelberg, New York, 1987).Google Scholar
[27]Wang, S.W., ‘On the products of Orlicz spaces’, Bull. Acad. Polon. Sci. 11 (1963), 1922.Google Scholar
[28]Zabrejko, P.P., ‘Nonlinear integral operators’, (Russian), Voran. Gas. Univ. Trudy Sem. Funk. Anal. 8 (1966), 1148.Google Scholar
[29]Zabrejko, P.P., On the theory of integral operators in ideal function spaces, (Russian) (Doct. Dissertation, Univ. Voronezh, 1968).Google Scholar
[30]Zabrejko, P.P., Koshelev, A.I., Krasnosel'skil, M.A., Mikhlin, S.G., Rakovshchik, L.S. and Stetsenko, V.Ya, Integral equations, (Russian) (Nauka, Moscow, 1968). English translation (Noordhoff, Leyden, 1975).Google Scholar