Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-23T09:43:41.118Z Has data issue: false hasContentIssue false

ON ONE-DIMENSIONAL LEIBNIZ CENTRAL EXTENSIONS OF A FILIFORM LIE ALGEBRA

Published online by Cambridge University Press:  29 July 2011

ISAMIDDIN S. RAKHIMOV*
Affiliation:
Institute for Mathematical Research (INSPEM) Department of Mathematics, FS, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor Darul Ehsan, Malaysia (email: [email protected])
MUNTHER A. HASSAN
Affiliation:
Institute for Mathematical Research (INSPEM), Serdang, Selangor Darul Ehsan, Malaysia (email: [email protected])
*
For correspondence; e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The paper deals with the classification of Leibniz central extensions of a filiform Lie algebra. We choose a basis with respect to which the multiplication table has a simple form. In low-dimensional cases isomorphism classes of the central extensions are given. In the case of parametric families of orbits, invariant functions (orbit functions) are provided.

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2011

Footnotes

The research was supported by the Grant 01-12-10-978FR MOHE, Malaysia.

References

[1]Albeverio, S., Omirov, B. A. and Rakhimov, I. S., ‘Classification of four-dimensional nilpotent complex Leibniz algebras’, Extracta Math. 21(3) (2006), 197210.Google Scholar
[2]Gomez, J. R., Jimenez-Merchan, A. and Khakimdjanov, Y., ‘Low-dimensional filiform Lie algebras’, J. Pure Appl. Algebra 130 (1998), 133158.CrossRefGoogle Scholar
[3]Hakimjanov (Khakimdjanov), You. B., ‘Variété des lois d’algèbres de Lie nilpotentes’, Geom. Dedicata 40 (1991), 229295.Google Scholar
[4]Loday, J.-L., ‘Une version noncommutative des algèbres de Lie: les algèbres de Leibniz’, Enseign. Math. 39 (1993), 269293.Google Scholar
[5]Loday, J.-L. and Pirashvili, T., ‘Universal enveloping algebras of Leibniz algebras and (co)homology’, Math. Ann. 296 (1993), 139158.CrossRefGoogle Scholar
[6]Omirov, B. A. and Rakhimov, I. S., ‘On Lie-like complex filiform Leibniz algebras’, Bull. Aust. Math. Soc. 79 (2009), 391404.CrossRefGoogle Scholar
[7]Umlauf, K. A., Über die Zusammensetzung der endlichen continuierlichen Transformationsgruppen, insbesondere der Gruppen vom Range Null, Inaugural-Dissertation, Universität Leipzig (Von Breitkopf & Härtel, Leipzig, 1891).Google Scholar