No CrossRef data available.
Article contents
ON MULTIPLIERS BETWEEN SOME SPACES OF HOLOMORPHIC FUNCTIONS
Part of:
Harmonic analysis in one variable
Spaces and algebras of analytic functions
Topological linear spaces and related structures
Published online by Cambridge University Press: 29 March 2017
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We study function multipliers between spaces of holomorphic functions on the unit disc of the complex plane generated by symmetric sequence spaces. In the case of sequence $\ell ^{p}$ spaces we recover Nikol’skii’s results [‘Spaces and algebras of Toeplitz matrices operating on $\ell ^{p}$’, Sibirsk. Mat. Zh.7 (1966), 146–158].
MSC classification
- Type
- Research Article
- Information
- Copyright
- © 2017 Australian Mathematical Publishing Association Inc.
References
Defant, A., Mastyło, M. and Michels, C., ‘Summing inclusion maps between symmetric sequence spaces’, Trans. Amer. Math. Soc.
354(11) (2002), 4473–4492.CrossRefGoogle Scholar
Fernandez-Cabrera, L. M., ‘Inclusion indices of function spaces and applications’, Math. Proc. Cambridge Philos. Soc.
136(3) (2004), 665–674.CrossRefGoogle Scholar
Kantorovich, L. V. and Akilov, G. P., Functional Analysis, 2nd revised edn (Nauka, Moscow, 1977), (in Russian); English translation, Pergamon Press, Oxford, 1982.Google Scholar
Lindenstrauss, J. and Tzafriri, L., Classical Banach spaces, Vol. I (Springer, Berlin, 1997).Google Scholar
Nikol’skii, N. K., ‘Spaces and algebras of Toeplitz matrices operating on ℓ
p
’, Sibirsk. Mat. Zh.
7 (1966), 146–158.Google Scholar
Schur, I., ‘Über Potenzreihen, die im Innern des Einheitskreises baschränkt sind’, J. reine angew. Math.
147 (1917), 205–232.CrossRefGoogle Scholar
Sukochev, F. A. and Tomskova, A. A., ‘Schur multipliers associated with symmetric sequence spaces’, Mat. Zametki
92(6) (2012), 939–942; (in Russian); English translation, Math. Notes
92(5–6) (2012), 830–833.Google Scholar
Zygmund, A., Trigonometric Series, Vol. I (Cambridge University Press, Cambridge, 1959).Google Scholar
You have
Access