Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T02:19:06.786Z Has data issue: false hasContentIssue false

On metric regularity in metric spaces

Published online by Cambridge University Press:  17 April 2009

Serge Gautier
Affiliation:
Université de Pau, Laboratoire de Mathématiques, avenue de l'Université, 64 000 Pau, France e-mail: [email protected], [email protected]
Karine Pichard
Affiliation:
Université de Pau, Laboratoire de Mathématiques, avenue de l'Université, 64 000 Pau, France e-mail: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove metric regularity results for both single-valued maps and set-valued maps defined between metric spaces.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2003

References

[1]Aubin, J.P., ‘Mutational equations in metric spaces’, Set-valued Anal. 1 (1993), 346.CrossRefGoogle Scholar
[2]Aubin, J.P., Mutational and morphological analysis. Tools for shape evolution and morphogenesis (Birkhäuser, Boston MA, 1999).CrossRefGoogle Scholar
[3]Azé, D., ‘An inversion theorem for set-valued maps’, Bull. Austral. Math. Soc. 37 (1988), 411414.CrossRefGoogle Scholar
[4]Azé, D. and Corvellec, J.N. and Lucchetti, R.E., ‘Variational pairs and applications to stability in nonsmooth analysis’, Nonlinear Anal. 49 (2002), 643670.CrossRefGoogle Scholar
[5]Borwein, J.M. and Zhuang, D.M., ‘Verifiable necessary and sufficient conditions for openess and regularity of set-valued and single-valued maps’, J. Math. Anal. Appl. 134 (1988), 441459.CrossRefGoogle Scholar
[6]Frankowska„, H.Some inverse mapping theorems’, Ann. Inst. Henri Poincaré Anal. Non Linéaire 7 (1990), 183234.CrossRefGoogle Scholar
[7]Frankowska, H., ‘Conical inverse mapping theorems’, Bull. Austral. Math. Soc. 45 (1992), 5360.CrossRefGoogle Scholar
[8]Graves, L.M., ‘Some mapping theorems’, Duke Math. 17 (1950), 111114.CrossRefGoogle Scholar
[9]Ioffe, A., ‘On perturbation stability of metric regularity. Wellposedness in optimization and related topics’, Set-Valued Anal. 9 (2001), 101109.CrossRefGoogle Scholar
[10]Ioffe, A., ‘Towards metric theory of metric regularity’, (Preprint of the University of Technion, Israël, 2002).Google Scholar
[11]Jourani, A., ‘On metric regularity result’, Bull. Austral. Math. Soc. 44 (1991), 19.CrossRefGoogle Scholar
[12]Jourani, A. and Thibault, L., ‘Approximate subdifferential and metric regularity: the finite-dimensional case’, Math. Programming 47 (1990), 203218.CrossRefGoogle Scholar
[13]Jourani, A. and Thibault, L., ‘Approximations and metric regularity in mathematical programming in Banach spaces’, Math. Oper. Res. 18 (1993), 390401.CrossRefGoogle Scholar
[14]Jourani, A. and Thibault, L., ‘Metric regularity for strongly compactly Lipschitzian mappings’, Nonlinear Anal. 24 (1995), 229240.CrossRefGoogle Scholar
[15]Mordukhovich, B., Complete characterization of openess, metric regularity and Lipschitzian properties of multifunctions, Trans. Amer. Math. Soc. 340 (1993), 135.CrossRefGoogle Scholar
[16]Penot, J.P., Metric regularity, openess and Lipschitzian behavior of multifunctions, Nonlinear Anal. 13 (1989), 629643.CrossRefGoogle Scholar
[17]Penot, J.P., ‘Open mappings theorems and linearization stability’, Numer. Funct. Anal. Optim. 8 (1985), 2135.CrossRefGoogle Scholar
[18]Pichard, K., Equations différentielles dans les espaces métriques. Applications à l'évolution de domaines, (Thèse) (Université de Pau, France, 2001).Google Scholar
[19]Pichard, K. and Gautier, S., ‘Equations with delay in metric spaces: the mutational approach’, Numer. Funct. Anal. Optim. 7 and 8 (2000), 917932.CrossRefGoogle Scholar