Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-23T12:07:40.087Z Has data issue: false hasContentIssue false

ON LÜROTH EXPANSIONS IN WHICH THE LARGEST DIGIT GROWS WITH SLOWLY INCREASING SPEED

Published online by Cambridge University Press:  23 June 2022

MENGJIE ZHANG*
Affiliation:
School of Mathematics and Statistics, Henan University of Science and Technology, 471023 Luoyang, PR China
WEILIANG WANG
Affiliation:
School of Finance and Mathematics, West Anhui University, 237012 Luan, PR China e-mail: [email protected]

Abstract

Let $0\leq \alpha \leq \infty $ , $0\leq a\leq b\leq \infty $ and $\psi $ be a positive function defined on $(0,\infty )$ . This paper is concerned with the growth of $L_{n}(x)$ , the largest digit of the first n terms in the Lüroth expansion of $x\in (0,1]$ . Under some suitable assumptions on the function $\psi $ , we completely determine the Hausdorff dimensions of the sets

$$\begin{align*}E_\psi(\alpha)=\bigg\{x\in(0,1]: \lim\limits_{n\rightarrow\infty}\frac{\log L_n(x)}{\log\psi(n)}=\alpha\bigg\} \end{align*}$$

and

$$\begin{align*}E_\psi(a,b)=\bigg\{x\in(0,1]: \liminf\limits_{n\rightarrow\infty}\frac{\log L_n(x)}{\log\psi(n)}=a, \limsup\limits_{n\rightarrow\infty}\frac{\log L_n(x)}{\log\psi(n)}=b\bigg\}. \end{align*}$$

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This research was supported by National Natural Science Foundation of China (No. 12101191), Natural Science Research Project of West Anhui University (No. WGKQ2021020) and Provincial Natural Science Research Project of Anhui Colleges (No. KJ2021A0950).

References

Barreira, L. and Iommi, G., ‘Frequency of digits in the Lüroth expansion’, J. Number Theory 129(6) (2009), 14791490.CrossRefGoogle Scholar
Cao, C. Y., Wu, J. and Zhang, Z. L., ‘The efficiency of approximating real numbers by Lüroth expansion’, Czechoslovak Math. J. 63 (2013), 497513.CrossRefGoogle Scholar
Dajani, K. and Kraaikamp, C., Ergodic Theory of Numbers (Mathematical Association of America, Washington, DC, 2002).CrossRefGoogle Scholar
Falconer, K. J., Fractal Geometry: Mathematical Foundations and Applications, 2nd edn (John Wiley and Sons, Chichester, 2004).Google Scholar
Fan, A. H., Liao, L. M., Ma, J. H. and Wang, B. W., ‘Besicovitch–Eggleston sets in the countable symbolic space’, Nonlinearity 23(5) (2010), 11851197.10.1088/0951-7715/23/5/009CrossRefGoogle Scholar
Galambos, J., Representations of Real Numbers by Infinite Series, Lecture Notes in Mathematics, 502 (Springer-Verlag, Berlin–Heidelberg–New York, 1976).CrossRefGoogle Scholar
Hutchinson, J., ‘Fractals and self-similarity’, Indiana Univ. Math. J. 30 (1981), 713747.10.1512/iumj.1981.30.30055CrossRefGoogle Scholar
Jakimczuk, R., ‘Functions of slow increase and integer sequences’, J. Integer Seq. 13 (2010), Article no. 10.1.1.Google Scholar
Jakimczuk, R., ‘Integer sequences, functions of slow increase, and the Bell numbers’, J. Integer Seq. 14 (2011), Article no. 11.5.8.Google Scholar
Liao, L. M. and Rams, M., ‘Subexponentially increasing sums of partial quotients in continued fraction expansions’, Math. Proc. Cambridge Philos. Soc. 160(3) (2016), 401412.CrossRefGoogle Scholar
Lin, S. Y. and Li, J. J., ‘Exceptional sets related to the largest digits in Lüroth expansions’, Int. J. Number Theory, to appear.Google Scholar
Lüroth, J., ‘Ueber eine eindeutige Entwickelung von Zahlen in eine unendliche Reihe’, Math. Ann. 21 (1883), 411423.CrossRefGoogle Scholar
Shen, L. M. and Liu, Y. H., ‘A note on a problem of J. Galambos’, Turkish J. Math. 32 (2008), 103109.Google Scholar
Shen, L. M., Yu, Y. Y. and Zhou, Y. X., ‘A note on the largest digits in Lüroth expansion’, Int. J. Number Theory 10 (2014), 10151023.CrossRefGoogle Scholar
Song, K. K., Fang, L. L. and Ma, J. H., ‘Level sets of partial maximal digits for Lüroth expansion’, Int. J. Number Theory 13 (2017), 27772790.10.1142/S1793042117501536CrossRefGoogle Scholar
Wu, J. and Xu, J., ‘The distribution of the largest digit in continued fraction expansions’, Math. Proc. Cambridge Philos. Soc. 146 (2009), 207212.10.1017/S0305004108001771CrossRefGoogle Scholar
Zhang, M. J. and Ma, C., ‘On the exceptional sets concerning the leading partial quotient in continued fractions’, J. Math. Anal. Appl. 500(1) (2021), Article no. 125110.10.1016/j.jmaa.2021.125110CrossRefGoogle Scholar