Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-09T03:41:45.726Z Has data issue: false hasContentIssue false

On group uniformities on the square of a space and extending pseudometrics

Published online by Cambridge University Press:  17 April 2009

Michael G. Tkačnko
Affiliation:
Departamento de MatemáticasUniversidad Autonóma, MetropolitanaUnidad IztapalapaMexico 13 e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We give some conditions under which, for a given pair (d1, d2) of continuous pseudometrics respectively on X and X3, there exists a continuous semi-norm N on the free topological group F(X) such that N(x · y−1) = d1(x, y) and N(x · y · t−1 · z−1) ≥ d2((x, y), (z, t)) for all x, y, z, tX. The “extension” results are applied to characterise thin subsets of free topological groups and obtain some relationships between natural uniformities on X2 and those induced by the group uniformities *V, V* and *V* of F(X).

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1995

References

[1]Comfort, W.W. and Ross, K.A., ‘Pseudocompactness and uniform continuity in topological groups’, Pacific J. Math. 16 (1966), 483496.CrossRefGoogle Scholar
[2]Engelking, R., General topology (PWN, Warsaw, 1977).Google Scholar
[3]Graev, M.I., ‘Free topological groups’, (in Russian), Izv. Akad. Nauk SSSR Ser. Mat. 12 (1948), 279324. English translation: Transl. Math. Monographs 8 (1962), 305–364.Google Scholar
[4]Graev, M.I., ‘Theory of topological groups’, (in Russian), Uspekhi Mat. Nauk 5 (1950), 356.Google Scholar
[5]Markov, A.A., ‘On free topological groups’, (in Russian), Izv. Akad. Nauk SSSR Ser. Mat. 9 (1945), 364. English translation: Transl. Math. Monographs 8 (1962), 195–272.Google Scholar
[6]Morris, S.A. and Nickolas, P., ‘Locally invariant topologies on free groups’, Pacific J. Math. 103 (1982), 523537.Google Scholar
[7]Nummela, E.C., ‘Uniform free topological groups and Samuel compactifications’, Topology Appl. 13 (1982), 7783.Google Scholar
[8]Pestov, V.G., ‘Some properties of free topological groups’, (in Russian), Vestnik Moscov. Univ. Ser. Matem. (1982), 3537. English translation: Moscow Univ. Math. Bull. 37, 46–49.Google Scholar
[9]Pestov V.G., V.G., ‘Thin sets in topological groups and a new compactness theorem’, (in Russian), Izv. Vyssh. Uchebn. Zaved. Ser. Matem. 11 (1987), 6466. English translation: Soviet Math. 31, 81–84.Google Scholar
[10]Sipacheva, O.V. and Tkačenko, M.G., ‘Thin and bounded subsets of free topological groups’, Topology Appl. 36 (1990), 143156.Google Scholar
[11]Sipacheva, O.V. and Uspenskiiˇ, V.V., ‘Free topological groups with no small subgroups and Graev metrics’, (in Russian), Vestnik Moscov. Univ. Ser. Mat. 4 (1987), 2124. English translation: Moscow Univ. Math. Bull. 42, 24–29.Google Scholar
[12]Šwierczkowski, S., ‘Topologies in free algebras’, Proc. London Math. Soc. 14 (1964), 566576.Google Scholar
[13]Tkačenko, M.G., ‘On completeness of topological groups’, (in Russian), Sibirsk. Mat. J. 25 (1984), 146158. English translation: Siberian Math. J. 25, 122–131.Google Scholar
[14]Tkačenko, M.G., ‘On topologies of free groups’, Czechoslovak. Math. J. 34 (1984), 541551.CrossRefGoogle Scholar
[15]Tkačenko, M.G., ‘On some properties of free topological groups’, (in Russian), Mat. Zametki 37 (1985), 110118. English translation: Math. Notes 37.Google Scholar
[16]Tkačenko, M.G., ‘Concordant extension of pseudometrics from subspaces of free topological groups’, in Algebraic and logic constructions (Collection), (in Russian) (Kalinin State Univ., 1989), pp. 94103.Google Scholar