Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-24T17:29:05.257Z Has data issue: false hasContentIssue false

ON EXTRINSICALLY SYMMETRIC HYPERSURFACES OF ℍn×ℝ

Published online by Cambridge University Press:  27 September 2010

GIOVANNI CALVARUSO
Affiliation:
Dipartimento di Matematica, Università del Salento, ‘E. De Giorgi’, Provinciale Lecce–Arnesano, 73100 Lecce, Italy (email: [email protected])
DANIEL KOWALCZYK
Affiliation:
Departement Wiskunde, Katholieke Universiteit Leuven, Celestijnenlaan, 200B, Box 2400, B-3001 Leuven, Belgium (email: [email protected])
JOERI VAN DER VEKEN*
Affiliation:
Departement Wiskunde, Katholieke Universiteit Leuven, Celestijnenlaan 200B, Box 2400, B-3001 Leuven, Belgium (email: [email protected])
*
For correspondence; e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Totally umbilical, semi-parallel and parallel hypersurfaces of ℍn×ℝ are completely classified. More examples arise than in the analogous study on the ambient space 𝕊n×ℝ.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2010

Footnotes

The third named author is a postdoctoral researcher supported by the Research Foundation—Flanders (FWO).

References

[1]Chen, B. Y., Geometry of Submanifolds (Marcel Dekker, New York, 1974).Google Scholar
[2]Daniel, B., ‘Isometric immersions into 𝕊n×ℝ and ℍn×ℝ and applications to minimal surfaces’, Trans. Amer. Math. Soc. 361 (2009), 62556282.CrossRefGoogle Scholar
[3]Dillen, F., ‘Semi-parallel hypersurfaces of real space forms’, Israel J. Math. 75 (1991), 193202.CrossRefGoogle Scholar
[4]Dillen, F., Fastenakels, J. and Van der Veken, J., ‘Rotation hypersurfaces in 𝕊n×ℝ and ℍn×ℝ’, Note Mat. 29 (2009), 4154.Google Scholar
[5]Lawson, H. B., ‘Local rigidity theorems for minimal hypersurfaces’, Ann. of Math. (2) 89 (1969), 187197.CrossRefGoogle Scholar
[6]Ryan, P. J., ‘A note on conformally flat spaces with constant scalar curvature’, in: Proceedings of the 13th Biennial Seminar of the Canadian Mathematical Congress, Vol. 2, Canad. Math. Congr., Montreal (1972), 115–124.Google Scholar
[7]Souam, R. and Toubiana, E., ‘Totally umbilic surfaces in homogeneous 3-manifolds’, Comment. Math. Helv. 84 (2009), 673704.Google Scholar
[8]Van der Veken, J., ‘Higher order parallel surfaces in Bianchi–Cartan–Vranceanu spaces’, Results Math. 51 (2008), 339359.Google Scholar
[9]Van der Veken, J. and Vrancken, L., ‘Parallel and semi-parallel hypersurfaces of 𝕊n×ℝ’, Bull. Braz. Math. Soc. 39 (2008), 355370.Google Scholar