Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-22T14:03:57.763Z Has data issue: false hasContentIssue false

On explicit estimates for linear forms in the values of a class of E-functions

Published online by Cambridge University Press:  17 April 2009

Xu Guangshan
Affiliation:
School of Mathematics and Physics, Macquarie University, North Ryde, New South Wales 2113, Australia.
Wang Lianxiang
Affiliation:
School of Mathematics and Physics, Macquarie University, North Ryde, New South Wales 2113, Australia.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We apply methods of Mahler to obtain explicit lower bounds for certain combinations of E-functions satisfying systems of linear differential equations as studied by Makarov. Our results sharpen and generalise earlier results of Mahler, Shidlovskii, and Väänänen.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1982

References

[1]Mahler, Kurt, “On a paper by A. Baker on the approximation of rational powers of e”, Acta Arith. 27 (1975), 6187.CrossRefGoogle Scholar
[2]Mahler, Kurt, Lectures on transcendental numbers (Lecture Notes in Mathematics, 546. Springer-Verlag, Berlin, Heidelberg, New York, 1976).CrossRefGoogle Scholar
[3]Маяаров, Ю.Н. [Yu.N. Makarov], “Об оценяах меры линейной независимости значений E-фянкций” [On the estimates of the measure of linear independence for the values of E-functions], Vestnik Moskov. Univ. Ser. I Mat. Meh. 2 (1978), 312.Google ScholarPubMed
[4]Schneider, Theodor, Einführung in die Transzendenten Zahlen (Die Grundlehren der Mathematischen Wissenschaften, 81. Springer-Verlag, Berlin, Göttingen, Heidelberg, 1957).CrossRefGoogle Scholar
[5]Шидловский, А.В. [A.B. Šidlovskiĭ], “О трансцендентности и алгебсаичесной независимости значений целых функций некоторых нлассов” [Transcendence and algebraic independence of the values of entire functions of certain classes], Moskov. Gos. Univ. Uč. Zap. 186 (1959), 1170.Google ScholarPubMed
[6]Шидловский, А.Б. [A.B. Šidlovskii˘], “О кримерии алгебраической независимости значений одного класса целЫх функций” [A criterion for algebraic independence of the values of a class of entire functions], Izv. Akad. Nauk SSSR Ser. Mat. 23 (1959), 3566; Amer. Math. Soc. Transl. (2) 22 (1962), 339–370.Google ScholarPubMed
[7]Shidlovskii, A.B., “On the estimates of the algebraic independence measures of the values of E-functions”, J. Austral. Math. Soc. Ser. A 27 (1979), 385407.CrossRefGoogle Scholar
[8]Väänänen, Keijo, “On lower estimates for linear forms involving certain transcendental numbers”, Bull. Austral. Math. Soc. 14 (1976), 161179.CrossRefGoogle Scholar
[9]Väänänen, Keijo, “On linear forms of the values of one class of E-functions”, Acta Univ. Oulu. Ser. A Sci. Rerum Natur. No. 41 Math. No. 12 (1976), 19PP.Google Scholar
[10]Shan, Xu Guang and Rui, Yu Kun, “Some diophantine inequalities involving a class of Siegel's E-functions”, Kexue Tongbao 24 (1979), 481486.Google Scholar
[11]Rui, Yu Kun and Shan, Xu Guang, “A note on a theorem of Baker and Mahler”, Acta Math. Sinica 22 (1979), 487494.Google Scholar