Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by Crossref.
Le, Maohua
2001.
An exponential diophantine equation.
Bulletin of the Australian Mathematical Society,
Vol. 64,
Issue. 1,
p.
99.
Arif, S.A.
and
Abu Muriefah, Fadwa S.
2002.
On the Diophantine Equation x2+q2k+1=yn.
Journal of Number Theory,
Vol. 95,
Issue. 1,
p.
95.
Tengely, Sz.
2004.
On the diophantine equations x2 + a2 = 2yp.
Indagationes Mathematicae,
Vol. 15,
Issue. 2,
p.
291.
Saradha, N.
and
Srinivasan, Anitha
2006.
Solutions of some generalized Ramanujan-Nagell equations.
Indagationes Mathematicae,
Vol. 17,
Issue. 1,
p.
103.
Luca, Florian
and
Togbé, Alain
2007.
On The Diophantine Equation x
2
+ 7
2k
= y
n
.
The Fibonacci Quarterly,
Vol. 45,
Issue. 4,
p.
322.
ABU MURIEFAH, FADWA S.
LUCA, FLORIAN
and
TOGBÉ, ALAIN
2008.
ON THE DIOPHANTINE EQUATION x2 + 5a 13b = yn.
Glasgow Mathematical Journal,
Vol. 50,
Issue. 1,
p.
175.
LUCA, FLORIAN
and
TOGBÉ, ALAIN
2008.
ON THE DIOPHANTINE EQUATION x2 + 2a · 5b = yn.
International Journal of Number Theory,
Vol. 04,
Issue. 06,
p.
973.
Goins, Edray
Luca, Florian
and
Togbé, Alain
2008.
Algorithmic Number Theory.
Vol. 5011,
Issue. ,
p.
430.
Demirci, Musa
Naci Cangül, İsmail
Soydan, Gökhan
and
Tzanakis, Nikos
2010.
On the diophantine equation $x^{2}+5^{a}\cdot 11^{b}=y^{n}$.
Functiones et Approximatio Commentarii Mathematici,
Vol. 43,
Issue. 2,
Cangul, Ismail Naci
Demirci, Musa
Luca, Florian
Pintér, Ákos
and
Soydan, Gökhan
2010.
On the Diophantine Equation
x
2
+ 2
a
· 11
b
=
y
n
.
The Fibonacci Quarterly,
Vol. 48,
Issue. 1,
p.
39.
Zhu, Hui Lin
and
Le, Mao Hua
2011.
On some generalized Lebesgue–Nagell equations.
Journal of Number Theory,
Vol. 131,
Issue. 3,
p.
458.
BÉRCZES, ATTILA
and
PINK, ISTVÁN
2012.
ON THE DIOPHANTINE EQUATIONx2+d2l+ 1=yn.
Glasgow Mathematical Journal,
Vol. 54,
Issue. 2,
p.
415.
Godinho, Hemar
Marques, Diego
and
Togbé, Alain
2016.
On the Diophantine equation x
2 + C= yn
for C = 2
a
3
b
17
c
and C = 2
a
13
b
17
c
.
Mathematica Slovaca,
Vol. 66,
Issue. 3,
p.
565.
Bhatter, S.
Hoque, A.
and
Sharma, R.
2019.
On the solutions of a Lebesgue–Nagell type equation.
Acta Mathematica Hungarica,
Vol. 158,
Issue. 1,
p.
17.
Sharma, Richa
2020.
Class Groups of Number Fields and Related Topics.
p.
147.
Koutsianas, Angelos
2020.
AN APPLICATION OF THE MODULAR METHOD AND THE SYMPLECTIC ARGUMENT TO A LEBESGUE–NAGELL EQUATION.
Mathematika,
Vol. 66,
Issue. 1,
p.
230.