Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-01T20:43:45.631Z Has data issue: false hasContentIssue false

ON ALGEBRAIC INVARIANTS FOR FREE ACTIONS ON HOMOTOPY SPHERES

Published online by Cambridge University Press:  04 September 2015

JANG HYUN JO*
Affiliation:
Department of Mathematics, Sogang University, Seoul 121-742, Korea email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We investigate conjectures and questions regarding topological phenomena related to free actions on homotopy spheres and present some affirmative answers.

Type
Research Article
Copyright
© 2015 Australian Mathematical Publishing Association Inc. 

References

Adem, A. and Smith, J., ‘Periodic complexes and group extensions’, Ann. of Math. (2) 154 (2001), 407435.CrossRefGoogle Scholar
Asadollahi, J., Bahlekeh, A., Hajizamani, A. and Salarian, S., ‘On certain homological invariants of groups’, J. Algebra 335 (2011), 1835.CrossRefGoogle Scholar
Asadollahi, J., Bahlekeh, A. and Salarian, S., ‘On the hierarchy of cohomological dimension of groups’, J. Pure Appl. Algebra 213 (2009), 17951803.CrossRefGoogle Scholar
Asadollahi, J., Hajizamani, A. and Salarian, S., ‘Periodic flat resolutions and periodicity in group (co)homology’, Forum Math. 24 (2012), 273287.CrossRefGoogle Scholar
Bahlekeh, A., Dembegioti, F. and Talelli, O., ‘Gorenstein dimension and proper actions’, Bull. Lond. Math. Soc. 41 (2009), 859871.CrossRefGoogle Scholar
Benson, D. J. and Carlson, J. F., ‘Products in negative cohomology’, J. Pure Appl. Algebra 82 (1992), 107129.CrossRefGoogle Scholar
Brown, K. S., Cohomology of Groups (Springer, Berlin–Heidelberg–New York, 1982).CrossRefGoogle Scholar
Dembegioti, F. and Talelli, O., ‘On a relation between certain cohomological invariants’, J. Pure Appl. Algebra 212 (2008), 14321437.CrossRefGoogle Scholar
Emmanouil, I., ‘On certain cohomological invariants of groups’, Adv. Math. 225 (2010), 34463462.CrossRefGoogle Scholar
Emmanouil, I., ‘A homological characterization of locally finite groups’, J. Algebra 352 (2012), 167172.CrossRefGoogle Scholar
Emmanouil, I. and Talelli, O., ‘On the flat length of injective modules’, J. Lond. Math. Soc. (2) 84 (2011), 408432.CrossRefGoogle Scholar
Gedrich, T. V. and Gruenberg, K. W., ‘Complete cohomological functors of groups’, Topology Appl. 25 (1987), 203223.CrossRefGoogle Scholar
Goichot, F., ‘Homologie de Tate-Vogel équivariante’, J. Pure Appl. Algebra 82 (1992), 3964.CrossRefGoogle Scholar
Holm, H., ‘Gorenstein homological dimensions’, J. Pure Appl. Algebra 189 (2004), 167193.CrossRefGoogle Scholar
Ikenaga, B. M., ‘Homological dimension and Farrell cohomology’, J. Algebra 87 (1984), 422457.CrossRefGoogle Scholar
Jensen, C. U., Les foncterus dérivés de $\displaystyle \lim _{\longleftarrow }$et leurs applications en theorie des modules, Lecture Notes in Mathemtaics, 254 (Springer, Berlin–Heidelberg–New York, 1972).CrossRefGoogle Scholar
Jo, J. H., ‘Projective complete cohomological dimension of a group’, Int. Math. Res. Not. IMRN 13 (2004), 621636.CrossRefGoogle Scholar
Jo, J. H., ‘Complete homology and related dimensions of groups’, J. Group Theory 12 (2009), 431448.CrossRefGoogle Scholar
Jo, J. H. and Nucinkis, B. E. A., ‘Periodic cohomology and subgroups with bounded Bredon cohomological dimension’, Math. Proc. Cambridge Philos. Soc. 144 (2008), 329336.Google Scholar
Kropholler, P. H., ‘Hierarchical decompositions, generalized Tate cohomology, and groups of type (FP)’, in: Combinatorial and Geometric Group Theory (Edinburgh, 1993), London Mathematical Society Lecture Note Series, 204 (Cambridge University Press, Cambridge, 1995), 190216.Google Scholar
Kropholler, P. H., Martinez-Pérez, C. and Nucinkis, B. E. A., ‘Cohomological finiteness conditions for elementary amenable groups’, J. reine angew. Math. 637 (2009), 4962.Google Scholar
Kropholler, P. H. and Talelli, O., ‘On a property of fundamental groups of graphs of finite groups’, J. Pure Appl. Algebra 74 (1991), 5759.CrossRefGoogle Scholar
Mislin, G., ‘Tate cohomology for arbitrary groups via satellites’, Topology Appl. 56 (1994), 293300.CrossRefGoogle Scholar
Mislin, G. and Talelli, O., ‘On groups which act freely and properly on finite dimensional homotopy spheres’, in: Computational and Geometric Aspects of Modern Algebra (Edinburgh, 1998), London Mathematical Society Lecture Note Series, 275 (Cambridge University Press, Cambridge, 2000), 208228.CrossRefGoogle Scholar
Petrosyan, N., ‘Jumps in cohomology and free group actions’, J. Pure Appl. Algebra 210 (2007), 695703.CrossRefGoogle Scholar
Rotman, J. J., An Introduction to Homological Algebra, 2nd edn (Universitext, Springer, New York, 2009).CrossRefGoogle Scholar
Talelli, O., ‘On cohomological periodicity for infinite groups’, Comment. Math. Helv. 55 (1980), 178192.CrossRefGoogle Scholar
Talelli, O., ‘On groups with periodic cohomology after 1-step’, J. Pure Appl. Algebra 30 (1983), 8593.CrossRefGoogle Scholar
Talelli, O., ‘On groups with property O1’, Bull. Soc. Math. Greece (N.S.) 29 (1988), 8590.Google Scholar
Talelli, O., ‘On groups with cdG ≤ 1’, J. Pure Appl. Algebra 88 (1993), 245247.CrossRefGoogle Scholar
Talelli, O., ‘Periodicity in group cohomology and complete resolutions’, Bull. Lond. Math. Soc. 37 (2005), 547554.CrossRefGoogle Scholar
Talelli, O., ‘On periodic (co)homology of groups’, Comm. Algebra 40 (2012), 11671172.CrossRefGoogle Scholar
Talelli, O., ‘On the Gorenstein and cohomological dimension of groups’, Proc. Amer. Math. Soc. 142 (2014), 11751180.CrossRefGoogle Scholar