We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We investigate conjectures and questions regarding topological phenomena related to free actions on homotopy spheres and present some affirmative answers.
Adem, A. and Smith, J., ‘Periodic complexes and group extensions’, Ann. of Math. (2)154 (2001), 407–435.CrossRefGoogle Scholar
[2]
Asadollahi, J., Bahlekeh, A., Hajizamani, A. and Salarian, S., ‘On certain homological invariants of groups’, J. Algebra335 (2011), 18–35.CrossRefGoogle Scholar
[3]
Asadollahi, J., Bahlekeh, A. and Salarian, S., ‘On the hierarchy of cohomological dimension of groups’, J. Pure Appl. Algebra213 (2009), 1795–1803.CrossRefGoogle Scholar
[4]
Asadollahi, J., Hajizamani, A. and Salarian, S., ‘Periodic flat resolutions and periodicity in group (co)homology’, Forum Math.24 (2012), 273–287.CrossRefGoogle Scholar
[5]
Bahlekeh, A., Dembegioti, F. and Talelli, O., ‘Gorenstein dimension and proper actions’, Bull. Lond. Math. Soc.41 (2009), 859–871.CrossRefGoogle Scholar
[6]
Benson, D. J. and Carlson, J. F., ‘Products in negative cohomology’, J. Pure Appl. Algebra82 (1992), 107–129.CrossRefGoogle Scholar
[7]
Brown, K. S., Cohomology of Groups (Springer, Berlin–Heidelberg–New York, 1982).CrossRefGoogle Scholar
[8]
Dembegioti, F. and Talelli, O., ‘On a relation between certain cohomological invariants’, J. Pure Appl. Algebra212 (2008), 1432–1437.CrossRefGoogle Scholar
[9]
Emmanouil, I., ‘On certain cohomological invariants of groups’, Adv. Math.225 (2010), 3446–3462.CrossRefGoogle Scholar
[10]
Emmanouil, I., ‘A homological characterization of locally finite groups’, J. Algebra352 (2012), 167–172.CrossRefGoogle Scholar
[11]
Emmanouil, I. and Talelli, O., ‘On the flat length of injective modules’, J. Lond. Math. Soc. (2)84 (2011), 408–432.CrossRefGoogle Scholar
[12]
Gedrich, T. V. and Gruenberg, K. W., ‘Complete cohomological functors of groups’, Topology Appl.25 (1987), 203–223.CrossRefGoogle Scholar
[13]
Goichot, F., ‘Homologie de Tate-Vogel équivariante’, J. Pure Appl. Algebra82 (1992), 39–64.CrossRefGoogle Scholar
[14]
Holm, H., ‘Gorenstein homological dimensions’, J. Pure Appl. Algebra189 (2004), 167–193.CrossRefGoogle Scholar
[15]
Ikenaga, B. M., ‘Homological dimension and Farrell cohomology’, J. Algebra87 (1984), 422–457.CrossRefGoogle Scholar
[16]
Jensen, C. U., Les foncterus dérivés de$\displaystyle \lim _{\longleftarrow }$et leurs applications en theorie des modules, Lecture Notes in Mathemtaics, 254 (Springer, Berlin–Heidelberg–New York, 1972).CrossRefGoogle Scholar
[17]
Jo, J. H., ‘Projective complete cohomological dimension of a group’, Int. Math. Res. Not. IMRN13 (2004), 621–636.CrossRefGoogle Scholar
[18]
Jo, J. H., ‘Complete homology and related dimensions of groups’, J. Group Theory12 (2009), 431–448.CrossRefGoogle Scholar
[19]
Jo, J. H. and Nucinkis, B. E. A., ‘Periodic cohomology and subgroups with bounded Bredon cohomological dimension’, Math. Proc. Cambridge Philos. Soc.144 (2008), 329–336.Google Scholar
[20]
Kropholler, P. H., ‘Hierarchical decompositions, generalized Tate cohomology, and groups of type (FP)∞’, in: Combinatorial and Geometric Group Theory (Edinburgh, 1993), London Mathematical Society Lecture Note Series, 204 (Cambridge University Press, Cambridge, 1995), 190–216.Google Scholar
[21]
Kropholler, P. H., Martinez-Pérez, C. and Nucinkis, B. E. A., ‘Cohomological finiteness conditions for elementary amenable groups’, J. reine angew. Math.637 (2009), 49–62.Google Scholar
[22]
Kropholler, P. H. and Talelli, O., ‘On a property of fundamental groups of graphs of finite groups’, J. Pure Appl. Algebra74 (1991), 57–59.CrossRefGoogle Scholar
[23]
Mislin, G., ‘Tate cohomology for arbitrary groups via satellites’, Topology Appl.56 (1994), 293–300.CrossRefGoogle Scholar
[24]
Mislin, G. and Talelli, O., ‘On groups which act freely and properly on finite dimensional homotopy spheres’, in: Computational and Geometric Aspects of Modern Algebra (Edinburgh, 1998), London Mathematical Society Lecture Note Series, 275 (Cambridge University Press, Cambridge, 2000), 208–228.CrossRefGoogle Scholar
[25]
Petrosyan, N., ‘Jumps in cohomology and free group actions’, J. Pure Appl. Algebra210 (2007), 695–703.CrossRefGoogle Scholar
[26]
Rotman, J. J., An Introduction to Homological Algebra, 2nd edn (Universitext, Springer, New York, 2009).CrossRefGoogle Scholar