Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-08T23:44:36.622Z Has data issue: false hasContentIssue false

On a new singular direction of meromorphic functions

Published online by Cambridge University Press:  17 April 2009

Guo Hui
Affiliation:
Department of Mathematical Education, Normal College, Shenzhen University, Shenzhen, Guangdong 518060Peoples Republic of China e-mail: [email protected], [email protected]
Zheng Jian Hua
Affiliation:
Department of Mathematical Sciences, Tsinghua University, Beijing 100084, Peoples Republic of China e-mail: [email protected]
Tuen Wai Ng
Affiliation:
Department of Mathematics, The University of Hong Kong, Hong Kong, e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, by using Ahlfors' theory of covering surfaces, we establish the existence of a new singular direction for a meromorphic functions f, namely a T direction for f, for which the Nevanlinna characteristic function T(r, f) is used as a comparison function.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2004

References

[1]Chuang, C.T., Singular directions of meromorphic functions, (in Chinese) (Science Press, China, 1982).Google Scholar
[2]Gonchar, A.A., Havin, V.P. and Nikolski, N.K., Complex analysis I, Encyclopaedia of Mathematical Sciences 85 (Springer-Verlag, Berlin, 1997).Google Scholar
[3]Hayman, W.K., Meromorphic functions (Clarendon Press, Oxford, 1964).Google Scholar
[4]Hayman, W.K., ‘On the characteristic of functions meromorphic in the plane and of their integrals’, Proc. London Math. Soc. (3) 14 (1965), 93128.Google Scholar
[5]Julia, G., ‘Sur quelques proprietes nouvelles des functions entieres ou meromorphes’, Ann. Ecole Norm. Sup. 36 (1919), 93125; 37 (1920), 165–218.Google Scholar
[6]Offord, A.C., ‘Lacunary entire funcitons’, Math. Proc. Camb. Philos. Soc. 114 (1993), 6783.Google Scholar
[7]Ostrowski, A., ‘Ueber Folgen analytischer Funktionen und einige Verschearfungen des Picardschen Satzes’, Math. Zeit. 24 (1926), 215258.CrossRefGoogle Scholar
[8]Tsuji, M., Potential theory in modern function theory (Maruzen Co. Ltd., Tokyo, 1959).Google Scholar
[9]Valiron, G., ‘Recherches sur le theoreme de M. Borel dans la theorie des functions meromorphes’, Acta Math. 52 (1928), 6792.Google Scholar
[10]Valiron, G., ‘Directions de Borel des fonctions meromorphes’, Mem. Sci. Math. Fasc. 89 (1938).Google Scholar
[11]Yang, L., ‘Borel directions of meromorphic functions in an angular domain’, Sci. Sinica (1979), 149163.Google Scholar
[12]Zhang, Q.D., ‘On Nevanlinna direction and Borel direction of meromorphic functions’, (in Chinese), Acta Math. Sinica 29 (1986), 550554.Google Scholar
[13]Zhang, Q.D. and Yang, L., ‘New singular direction of meromorphic functions’, (in Chinese), Sci. Sinica Ser. A 11 (1983), 982994.Google Scholar
[14]Zheng, J.H., ‘On transcendental meromorphic functions with radially distributed values’, Sci. Sinica Ser A (to appear).Google Scholar