Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-22T06:43:34.407Z Has data issue: false hasContentIssue false

On a new singular direction of algebroid functions

Published online by Cambridge University Press:  17 April 2009

Songmin Wang
Affiliation:
LMIB & Department of Mathematics, Beihang University, Beijing, 100083, People's Republic of China, e-mail: [email protected]
Zongsheng Gao
Affiliation:
Department of Mathematics, Beihang University, Beijing, 100083, People's Republic of China, e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we prove that for an algebroid function w (z) with finite lower order, satisfying , there exists a T direction dealing with multiple values.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2007

References

[1]Gao, Z.S. and Sun, D.S., ‘On the Borel direction of the largest type of algebroid functions’, (in Chinese), Chinese Ann. Math. Ser.A 6 (1997), 701710.Google Scholar
[2]Gao, Z.S. and Wang, F.Z., ‘Theorems of the covering surfaces and multiple values of the algebroid functions’, (in Chinese), Acta. Math. Sinica. 44 (2001), 805814.Google Scholar
[3]Guo, H., Zheng, J.H. and Ng, T., ‘On a new singular direction of meromorphic functions’, Bull. Austral. Math. Soc. 69 (2004), 277287.Google Scholar
[4]Hayman, W.K., Meromorphic functions (Clarendon Press, Oxford, 1964).Google Scholar
[5]He, Y.Z. amd Xiao, X.Z., Algebroid functions and ordinary differential equations, (in Chinese) (Science Press, Beijing, 1988).Google Scholar
[6]Katajamäki, K., ‘Algebroid solutions of binomial and linear differential equations’, Ann. Acad. Sci. Fenn. Ser. A I Math. 90 (1993).Google Scholar
[7], Y.N., ‘On the Julia direction of meromprphic functions and meromorphic algebroid functions’, (in Chinese), Acta Math. Sinica 27 (1984), 368373.Google Scholar
[8], Y.N. and Gu, Y.X., ‘On the existence of Borel direction for algebroid function’, (in Chinese), Chinese Sci. Bull. 28 (1983), 264266.Google Scholar
[9], Y.N. and Zhang, G.H., ‘On the Nevanlinna direction of meromorphic functions’, Sci. China Ser. A. 3 (1983), 215224.Google Scholar
[10]Selberg, H.L., ‘Über eine Eigenschaft der logarithmischen Ableitung einer meromorphen oder algebroiden Funktion endlicher Ordnung’, Avh. Norske Vid. Akad. Oslo I 14 (1929).Google Scholar
[11]Selberg, H.L., ‘Über die Wertverteilung der algebroiden funktionen’, Math. Z. 31 (1930), 709728.CrossRefGoogle Scholar
[12]Ullrich, E., ‘Über den Einfluss der Verzweigtheit einer albebroide auf ihre Wertverteilung’, J. Reine Angew. Math. 167 (1931), 198220.Google Scholar
[13]Valiron, G., ‘Sur les fonctions algébroïdes méromorphes du second degré’, C. R. Acad. Sci. Paris. 189 (1929), 623625.Google Scholar
[14]Valiron, G., ‘Sur les directions de Borel des fonctions algébrodes méromorphes d'ordre infini’, C. R. Acad. Sci. Paris 206 (1938), 735737.Google Scholar
[15]Xuan, Z.X. and Gao, Z.S., ‘The Borel direction of the largest type of algebroid functions dealing with multiple values’, Kodai Math. J. 30 (2007), 97110.CrossRefGoogle Scholar
[16]Zheng, J.H., ‘On transcendental meromorphic functions with radially distributed values’, Sci. China Ser. A. 47 (2004), 401416.CrossRefGoogle Scholar