Article contents
ON A CLASS OF MONOMIAL IDEALS
Published online by Cambridge University Press: 28 January 2013
Abstract
Let $S$ be a polynomial ring over a field
$K$ and let
$I$ be a monomial ideal of
$S$. We say that
$I$ is MHC (that is,
$I$ satisfies the maximal height condition for the associated primes of
$I$) if there exists a prime ideal
$\mathfrak{p}\in {\mathrm{Ass} }_{S} \hspace{0.167em} S/ I$ for which
$\mathrm{ht} (\mathfrak{p})$ equals the number of indeterminates that appear in the minimal set of monomials generating
$I$. Let
$I= { \mathop{\bigcap }\nolimits}_{i= 1}^{k} {Q}_{i} $ be the irreducible decomposition of
$I$ and let
$m(I)= \max \{ \vert Q_{i}\vert - \mathrm{ht} ({Q}_{i} ): 1\leq i\leq k\} $, where
$\vert {Q}_{i} \vert $ denotes the total degree of
${Q}_{i} $. Then it can be seen that when
$I$ is primary,
$\mathrm{reg} (S/ I)= m(I)$. In this paper we improve this result and show that whenever
$I$ is MHC, then
$\mathrm{reg} (S/ I)= m(I)$ provided
$\vert {\mathrm{Ass} }_{S} \hspace{0.167em} S/ I\vert \leq 2$. We also prove that
$m({I}^{n} )\leq n\max \{ \vert Q_{i}\vert : 1\leq i\leq ~k\} - \mathrm{ht} (I)$, for all
$n\geq 1$. In addition we show that if
$I$ is MHC and
$w$ is an indeterminate which is not in the monomials generating
$I$, then
$\mathrm{reg} (S/ \mathop{(I+ {w}^{d} S)}\nolimits ^{n} )\leq \mathrm{reg} (S/ I)+ nd- 1$ for all
$n\geq 1$ and
$d$ large enough. Finally, we implement an algorithm for the computation of
$m(I)$.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright ©2013 Australian Mathematical Publishing Association Inc.
References
- 1
- Cited by