Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-23T15:19:24.076Z Has data issue: false hasContentIssue false

The n-th derivative characterisation of Möbius invariant Dirichlet space

Published online by Cambridge University Press:  17 April 2009

Rauno Aulaskari
Affiliation:
University of Joensuu, PO Box 111, FIN-8010 Joensuu, Finland e-mail: [email protected]
Maria Nowak
Affiliation:
Institute of Mathematics, Maria Curie-Sklodowska University, pl. M. Curie-Skodowskiej 1, 20–031 Lublin, Poland
Ruhan Zhao
Affiliation:
University of Joensuu, PO Box 111, FIN-8010 Joensuu, Finland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we give the n-th derivative criterion for functions belonging to recently defined function spaces Qp and Qp, 0. For a special parameter value p = 1 this criterion is applied to BMOA and VMOA, and for p > 1 it is applied to the Bloch space and the little Bloch space . Further, a Carleson measure characterisation is given to Qp, and in the last section the multiplier space from Hq into Qp is considered.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1998

References

[1]Anderson, J. M., Clunie, J. and Pommerenke, Ch., ‘On Bloch functions and normal functions’, J. Reine Angew. Math. 240 (1974), 1237.Google Scholar
[2]Arazy, J., Fisher, S.D. and Peetre, J., ‘Möbius invariant function spaces’, J. Reine Angew. Math. 363 (1985), 110145.Google Scholar
[3]Aulaskari, R., He, Y. and Zhao, R., ‘On entire functions, Bloch and normal functions’, Chinese Ann. Math. Ser. B 17 (1996), 139148.Google Scholar
[4]Aulaskari, R. and Lappan, P., ‘Criteria for an analytic function to be Bloch and a harmonic or meromorphic function to be normal’, in Complex analysis and its applications, Pitman Research Notes in Mathematics Series 305 (Longman Scientific and Technical, Harlow, 1994), pp. 136146.Google Scholar
[5]Aulaskari, R., Stegenga, D. A. and Xiao, J., ‘Some subclasses of BMOA and their characterization in terms of Carleson measures’, Rocky Mountain J. Math. 26 (1996), 485506.CrossRefGoogle Scholar
[6]Aulaskari, R., Xiao, J. and Zhao, R., ‘On subspaces and subsets of BMOA and UBC’, Analysis 15 (1995), 101121.CrossRefGoogle Scholar
[7]Axler, S., ‘The Bergman space, the Bloch space and commutators of multiplication operators’, Duke Math. J. 53 (1986), 315332.CrossRefGoogle Scholar
[8]Baernstein, A. II, ‘Analytic functions of bounded mean oscillation’, in Aspects of contemporary complex analysis (Academic Press, London, New York, 1980), pp. 226.Google Scholar
[9]Cima, J.A. and Wogen, W., ‘A Carleson measure theorem for the Bergman space on the ball’, J. Operator Theory 7 (1982), 157165.Google Scholar
[10]Essén, M. and Xiao, J., ‘Some results on Qp spaces, 0 < p < 1’, J. Reine Angew. Math. 485 (1997), 173195.Google Scholar
[11]Mateljevic, M. and Pavlovic, M., ‘Multipliers of Hp and BMOA’, Pacific J. Math. 146 (1990), 7184.CrossRefGoogle Scholar
[12]Sarason, D., ‘Functions of vanishing mean oscillation’, Trans. Amer. Math. Soc. 205 (1975), 391405.CrossRefGoogle Scholar
[13]Stegenga, D.A., ‘Multipliers of Dirichlet space’, Illinois J. Math. 24 (1980), 113139.CrossRefGoogle Scholar
[14]Stroethoff, K., ‘Besov-type characterizations for the Bloch space’, Bull. Austral. Math. Soc. 39 (1989), 405420.CrossRefGoogle Scholar
[15]Xiao, J., ‘Carleson measure, atomic decomposition and free interpolation from Bloch space’, Ann. Acad. Sci. Fenn. Ser. A I Math. 19 (1994), 3546.Google Scholar
[16]Xiao, J. and Zhong, L., ‘On little Bloch space, atomic decomposition and free interpolation’, Complex Variables Theory Appl. 27 (1995), 175184.Google Scholar
[17]Zhao, R., ‘On a general family of function spaces’, Ann. Acad. Sci. Fenn. Math. Dissertationes 105 (1996), 156.Google Scholar
[18]Zhu, K.H., Operator Theory in Function Spaces (Marcel Dekker, Inc., New York and Basel, 1990).Google Scholar