Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-09T22:39:19.463Z Has data issue: false hasContentIssue false

n-Prüfer domains

Published online by Cambridge University Press:  17 April 2009

Sang Bum Lee
Affiliation:
Department of Mathematical Education, Sangmyung University, Seoul 110-743, Korea, e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We introduce n-Prüfer domains which axe generalisations of Prüfer domains and give several characterisations of them in terms of generalisations of purity, flatness and absolute purity.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2003

References

[1]Fuchs, L. and Salce, L., Modules over valuation domains, Lecture Notes in pure and Applied Math. 97 (Marcel Dekker, New York, 1984).Google Scholar
[2]Fuchs, L. and Salce, L., Modules over non-Noetherian domains, Math. Surveys and Monographs 84 (Amer. Math. Society, Providence, R.I., 2001).Google Scholar
[3]Gilmer, R., Multiplicative ideal theory, Queens Papers Pure Appl. Math. 90 (Queens University, Kingston, ON, 1972).Google Scholar
[4]Lee, S.B., ‘n-coherent rings’, Comm. Algebra 30 (2002), 11191126.CrossRefGoogle Scholar
[5]Lee, S.B., ‘Semi-Baer modules over domains’, Bull. Austral. Math. Soc. 64 (2001), 2126.CrossRefGoogle Scholar
[6]Megibben, C., ‘Absolutely pure modules’, Proc. Amer. Math. Soc. 26 (1970), 561566.CrossRefGoogle Scholar
[7]Rotman, J., An introduction to homological algebra (Academic Press, New York, 1979).Google Scholar
[8]Raynaud, M. and Gruson, L., ‘Critères de platitude et de projectivitè techniques de “platification” d'un module’, Invent. Math. 13 (1971), 189.CrossRefGoogle Scholar
[9]Sabbagh, G., ‘Coherence of polynomial rings and bounds in polynomial ideals’, J. Algebra 31 (1974), 499507.CrossRefGoogle Scholar