Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T18:44:16.141Z Has data issue: false hasContentIssue false

A NOTE ON THE SEMILOCAL CONVERGENCE OF CHEBYSHEV’S METHOD

Published online by Cambridge University Press:  15 October 2012

MANUEL A. DILONÉ*
Affiliation:
Dpto. de Investigación del ISFODOSU, Santo Domingo, Dominican Republic (email: [email protected])
MARTÍN GARCÍA-OLIVO
Affiliation:
Politécnico Militar San Miguel Arcángel, Santo Domingo, Dominican Republic (email: [email protected])
JOSÉ M. GUTIÉRREZ
Affiliation:
Dpto. de Matemáticas y Computación, Universidad de La Rioja, Logroño, Spain (email: [email protected])
*
For correspondence; e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we develop a Kantorovich-like theory for Chebyshev’s method, a well-known iterative method for solving nonlinear equations in Banach spaces. We improve the results obtained previously by considering Chebyshev’s method as an element of a family of iterative processes.

Type
Research Article
Copyright
Copyright © 2012 Australian Mathematical Publishing Association Inc. 

References

[1]Amat, S., Busquier, S., Gutiérrez, J. M. & Hernández, M. A., ‘On the global convergence of Chebyshev’s iterative method’, J. Comput. Appl. Math. 220 (2008), 1721.CrossRefGoogle Scholar
[2]Argyros, I. K., ‘The convergence of a Halley–Chebysheff-type method under Newton–Kantorovich hypotheses’, Appl. Math. Lett. 6 (1993), 7174.CrossRefGoogle Scholar
[3]Argyros, I. K., Convergence and Applications of Newton-Type Iterations (Springer, New York, 2008).Google Scholar
[4]Argyros, I. K. & Chen, D., ‘Results on Chebyshev method in Banach space’, Proyecciones 12 (1993), 119128.CrossRefGoogle Scholar
[5]Argyros, I. K., Ezquerro, J. A., Gutiérrez, J. M., Hernández, M. A. & Hilout, S., ‘On the semilocal convergence of efficient Chebyshev–Secant-type methods’, J. Comput. Appl. Math. 235 (2011), 31953206.CrossRefGoogle Scholar
[6]Bodewig, E., ‘Über das Eulersche Verfahren zur Auflösung numerischer Gleichungen’, Comment. Math. Helv. 8 (1935), 14.CrossRefGoogle Scholar
[7]Candela, V. & Marquina, A., ‘Recurrence relations for rational cubic methods II: The Chebyshev method’, Computing 45 (1990), 113130.CrossRefGoogle Scholar
[8]Chen, D. & Argyros, I. K., ‘Results on Chebyshev method in Banach space’, Proyecciones 12 (1993), 119128.Google Scholar
[9]Chun, C., ‘Some variants of Chebyshev–Halley methods free from second derivative’, Appl. Math. Comput. 191 (2007), 193198.Google Scholar
[10]Ezquerro, J. A., Gutiérrez, J. M. & Hernández, M. A., ‘A construction procedure of iterative methods with cubical convergence’, Appl. Math. Comput. 85 (1997), 181199.Google Scholar
[11]Gander, W., ‘On Halley’s iteration method’, Amer. Math. Monthly 92 (1985), 131134.CrossRefGoogle Scholar
[12]Gilbert, W. J., ‘Generalizations of Newton’s method’, Fractals 9 (2001), 251262.CrossRefGoogle Scholar
[13]Gutiérrez, J. M. & Hernández, M. A., ‘A family of Chebyshev–Halley type methods in Banach spaces’, Bull. Aust. Math. Soc. 55 (1997), 113130.CrossRefGoogle Scholar
[14]Gutiérrez, J. M., Hernández, M. A. & Salanova, M. A., ‘Accesibility of solutions by Newton’s method’, Int. J. Comput. Math. 57 (1995), 239247.CrossRefGoogle Scholar
[15]Hernández, M. A. & Salanova, M. A., ‘Modification of the Kantorovich assumptions for semilocal convergence of the Chebyshev method’, J. Comput. Appl. Math. 126 (2000), 131143.CrossRefGoogle Scholar
[16]Kantorovich, L. V. & Akilov, G. P., Functional Analysis (Pergamon Press, Oxford, 1982).Google Scholar
[17]Kjurkchiev, N., ‘Initial approximations in Euler–Chebyshev’s method’, J. Comput. Appl. Math. 58 (1995), 233236.CrossRefGoogle Scholar
[18]Kneisl, K., ‘Julia sets for the super-Newton method, Cauchy’s method, and Halley’s method’, Chaos 11 (2001), 359370.CrossRefGoogle ScholarPubMed
[19]Kou, J., ‘On Chebyshev-Halley with sixth-order convergence for solving nonlinear equations’, Appl. Math. Comput. 190 (2007), 126131.Google Scholar
[20]Parida, P. K. & Gupta, D. K., ‘Semilocal convergence of a family of third-order Chebyshev-type methods under a mild differentiability condition’, J. Comput. Appl. Math. 87 (2010), 33303343.Google Scholar
[21]Petković, M. S., Petković, L. D. & Herceg, Y. D., ‘On Schröder’s families of root-finding methods’, J. Comput. Appl. Math. 233 (2010), 17551762.CrossRefGoogle Scholar
[22]Traub, J. F., Iterative Methods for the Solution of Equations (Prentice Hall, Englewood Cliffs, NJ, 1964).Google Scholar
[23]Yamamoto, T., ‘On the method of tangent hyperbolas in Banach spaces’, J. Comput. Appl. Math. 21 (1988), 7586.CrossRefGoogle Scholar
[24]Zheng, S. & Robbie, D., ‘A note on the convergence of Halley’s method for solving operator equations’, J. Aust. Math. Soc. Ser. B 37 (1995), 1625.CrossRefGoogle Scholar