Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T01:06:25.681Z Has data issue: false hasContentIssue false

A NOTE ON THE NUMBER OF SOLUTIONS OF TERNARY PURELY EXPONENTIAL DIOPHANTINE EQUATIONS

Published online by Cambridge University Press:  10 June 2022

YASUTSUGU FUJITA*
Affiliation:
Department of Mathematics, College of Industrial Technology, Nihon University, 2-11-1 Shin-ei, Narashino, Chiba, Japan
MAOHUA LE
Affiliation:
Institute of Mathematics, Lingnan Normal College, Zhangjiang, Guangdong 524048, PR China e-mail: [email protected]
NOBUHIRO TERAI
Affiliation:
Division of Mathematical Sciences, Department of Integrated Science and Technology, Faculty of Science and Technology, Oita University, 700, Dannoharu, Oita 870–1192, Japan e-mail: [email protected]
*
Rights & Permissions [Opens in a new window]

Abstract

Let a, b, c be fixed coprime positive integers with $\min \{a,b,c\}>1$ . We discuss the conjecture that the equation $a^{x}+b^{y}=c^{z}$ has at most one positive integer solution $(x,y,z)$ with $\min \{x,y,z\}>1$ , which is far from solved. For any odd positive integer r with $r>1$ , let $f(r)=(-1)^{(r-1)/2}$ and $2^{g(r)}\,\|\, r-(-1)^{(r-1)/2}$ . We prove that if one of the following conditions is satisfied, then the conjecture is true: (i) $c=2$ ; (ii) a, b and c are distinct primes; (iii) $a=2$ and either $f(b)\ne f(c)$ , or $f(b)=f(c)$ and $g(b)\ne g(c)$ .

MSC classification

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

1 Introduction

Let $\mathbb {N}$ be the set of all positive integers. Let a, b, c be fixed coprime positive integers with $\min \{a,b,c\}>1$ . We assume without loss of generality that a, b and c are not perfect powers. The purely exponential Diophantine equation

(1.1) $$ \begin{align} a^{x}+b^{y}=c^{z},\quad x,y,z \in \mathbb{N} \end{align} $$

has been studied deeply (see [Reference Le, Scott and Styer17] for a survey of the results). In 1933, Mahler [Reference Mahler18] used his p-adic analogue of the Diophantine approximation method of Thue–Siegel to prove that (1.1) has only finitely many solutions $(x,y,z)$ , but his method is ineffective. Let $N(a,b,c)$ denote the number of solutions $(x,y,z)$ of (1.1). An effective upper bound for $N(a,b,c)$ was first given by Gel’fond [Reference Gel’fond7], using his new method in transcendental number theory. Subsequently, as a straightforward consequence of an upper bound for the number of solutions of binary S-unit equations due to Beukers and Schlickewei [Reference Beukers and Schlickewei2], the bound was improved to $N(a,b,c)\le 2^{36}$ . More accurate upper bounds for $N(a,b,c)$ have been obtained under certain conditions:

  1. (i) if $2 \nmid c$ , then $N(a,b,c) \le 2$ (Scott and Styer [Reference Scott and Styer21]);

  2. (ii) if $\max \{a,b,c\}>5\times 10^{27}$ , then $N(a,b,c) \le 3$ (Hu and Le [Reference Hu and Le10]);

  3. (iii) if $2 \mid c$ and $\max \{a,b,c\}>10^{62}$ , then $N(a,b,c) \le 2$ (Hu and Le [Reference Hu and Le11]);

  4. (iv) if $2\mid c$ and $a<b<10^{62}$ , then $N(a,b,c) \le 2$ , except for $N(3,5,2)=3$ (Miyazaki and Pink [Reference Miyazaki and Pink19]).

Nevertheless, deeper problems about the number of solutions of (1.1) remain unresolved. Let $N^{\prime }(a,b,c)$ denote the number of solutions $(x,y,z)$ of (1.1) with $\min \{x,y,z\}>1$ . In this paper, we will discuss the following conjecture.

Conjecture 1.1 (Terai–Jeśmanowicz conjecture).

For any triple $(a,b,c)$ of positive integers with $\min\{a,b,c\}>1$ , we have $N^{\prime }(a,b,c)\le 1$ .

This conjecture contains the famous Jeśmanowicz conjecture concerning Pythagorean triples (see [Reference Jeśmanowicz12]) and its original form was put forward by Terai [Reference Terai22]. It is related to the generalised Fermat conjecture (see Problems B19 and D2 of [Reference Guy8]) and seems very difficult. In 2015, Hu and Le [Reference Hu and Le9] gave a general criterion to judge whether Conjecture 1.1 is true, but this criterion is difficult to apply because it involves some unsolved problems such as the existence of Wieferich primes (see Problem A3 of [Reference Guy8]).

We now discuss Conjecture 1.1 for $2 \in \{a,b,c\}$ using a different approach from the one in [Reference Hu and Le9]. First, by means of the results of [Reference Le14, Reference Scott20], we can directly prove the following result.

Theorem 1.2. If $c=2$ or a, b and c are distinct primes, then Conjecture 1.1 is true.

For any odd positive integer r with $r>1$ , we define $f(r)=(-1)^{(r-1)/2}$ and $2^{g(r)}\,\|\, r-(-1)^{(r-1)/2}$ . Obviously, $f(r) \in \{-1,1\}$ and $g(r)$ is a positive integer with $g(r) \ge 2$ . Using a combination of various methods including Baker’s method and known results on exponential Diophantine equations, we prove the following result.

Theorem 1.3. If $a=2$ and either $f(b)\ne f(c)$ , or $f(b)=f(c)$ and $g(b)\ne g(c)$ , then Conjecture 1.1 is true.

2 Preliminaries

For any positive integer s, let ${\mathop{\mathrm{ord}}\nolimits}_{2}(s)$ denote the order of $2$ in s, namely, $2^{{\mathop{\mathrm{ord}}\nolimits}_{2}(s)}\,\|\,s$ .

Lemma 2.1. For any positive integers r and s such that $r>1$ , $2 \nmid r$ and $2\mid s$ , we have

(2.1) $$ \begin{align} {\mathop{\mathrm{ord}}\nolimits}_{2}(r^{s}-1)=g(r)+{\mathop{\mathrm{ord}}\nolimits}_{2}(s). \end{align} $$

Proof. Since $2\mid s$ and $r=2^{g(r)}r_{1}+f(r)$ , where $r_{1}$ is an odd positive integer,

(2.2) $$ \begin{align} r^{s}-1&=(2^{g(r)}r_{1}+f(r))^{s}-1\notag\\ &=((f(r))^{s}-1)+2^{g(r)}r_{1}s(f(r))^{s-1}+\sum_{i=2}^{s}\binom{s}{i}(2^{g(r)}r_{1})^{i}(f(r))^{s-i}\notag\\ &=2^{g(r)}r_{1}sf(r)+\sum_{i=2}^{s}\binom{s}{i}(2^{g(r)}r_{1}f(r))^{i}. \end{align} $$

Further, since $g(r) \ge 2$ and $2\nmid r_{1}f(r)$ , we see that $2^{g(r)+{\mathop{\mathrm{ord}}\nolimits}_{2}(s)}\,\|\; 2^{g(r)}r_{1}sf(r)$ and

$$ \begin{align*} \binom{s}{i}(2^{g(r)}r_{1}f(r))^{i} \equiv 2^{g(r)}s\binom{s-1}{i-1}\frac{2^{g(r)(i-1)}}{i}(r_{1}f(r))^{i} \equiv 0 \pmod{2^{g(r)+{\mathop{\mathrm{ord}}\nolimits}_{2}(s)+1}},\quad i \ge 2. \end{align*} $$

Therefore, by (2.2), we obtain (2.1).

For any real number $\alpha $ , let $\log \alpha $ denote the natural logarithm of $\alpha $ .

Lemma 2.2. Let $\alpha _{1}$ , $\alpha _{2}$ , $\beta _{1}$ , $\beta _{2}$ be positive integers with $\min \{\alpha _{1},\alpha _{2}\}>1$ . Further, let $\Lambda =\beta _{1} \log \alpha _{1}-\beta _{2}\log \alpha _{2}$ . If $\Lambda \ne 0$ , then

$$ \begin{align*} \log|\Lambda|>-25.2(\log \alpha_{1})(\log \alpha_{2})\bigg(\max\bigg\{10,0.38+\log \bigg(\frac{\beta_{1}}{\log \alpha_{2}}+\frac{\beta_{2}}{\log \alpha_{1}}\bigg)\bigg\}\bigg)^{2}. \end{align*} $$

Proof. This is the special case of [Reference Laurent13, Corollary 2] for $m=10$ .

Lemma 2.3. Let $\alpha _{1}$ , $\alpha _{2}$ be odd integers with $\min \{|\alpha _{1}|,|\alpha _{2}|\}\ge 3$ and let $\beta _{1}$ , $\beta _{2}$ be positive integers. Further, let $\Lambda ^{\prime }=\alpha _{1}^{\,\beta _{1}}-\alpha _{2}^{\,\beta _{2}}$ . If $\Lambda ^{\prime }\ne 0$ and $\alpha _{1}\equiv \alpha _{2}\equiv 1 \pmod {4}$ , then

$$ \begin{align*} {\mathop{\mathrm{ord}}\nolimits}_{2}(|\Lambda^{\prime}|)&<19.55(\log|\alpha_{1}|)(\log|\alpha_{2}|)\\ &\quad \times \bigg(\max\bigg\{12\log 2,0.\,4+\log(2\log 2)+\log\bigg(\frac{\beta_{1}}{\log|\alpha_{2}|}+\frac{\beta_{2}}{\log|\alpha_{1}|}\bigg)\bigg\}\bigg)^{2}. \end{align*} $$

Proof. This is the special case of [Reference Bugeaud4, Theorem 2] for $p=2$ , $y_{1}=y_{2}=1$ , $\alpha _{1}\equiv \alpha _{2}\equiv 1 \pmod 4$ , $g=1$ and $E=2$ .

Lemma 2.4 [Reference Cohn6, Reference Le16].

The equation

$$ \begin{align*} X^{2}+2^{m}=Y^{n},\quad X,Y,m,n \in \mathbb{N},\, \gcd(X,Y)=1,~n>2 \end{align*} $$

has only the solutions $(X,Y,m,n)=(5,3,1,3), (7,3,5,4)$ and $(11,5,2,3)$ .

Lemma 2.5 [Reference Bennett and Skinner1, Theorem 8.4].

The equation

$$ \begin{align*} X^{2}-2^{m}=Y^{n},\quad X,Y,m,n \in \mathbb{N},\, \gcd(X,Y)=1,~m>1,n>2 \end{align*} $$

has only the solution $(X,Y,m,n)=(71,17,7,3)$ .

Lemma 2.6 [Reference Cao5].

If $a=2$ and b and c are distinct odd primes with $\max \{b,c\}<100$ , then $N^{\prime }(a,b,c)\le 1$ .

Lemma 2.7 [Reference Scott and Styer21].

If $2 \nmid c$ , then $N(a,b,c) \le 2$ .

Lemma 2.8 [Reference Scott20, Theorem 6].

$N^{\prime }(a,b,2)\le 1$ .

According to Theorems 1, 2 and 3 of [Reference Le14] and the proof of them, we can obtain the following lemma.

Lemma 2.9. Let p and q be fixed odd primes with $p \ne q$ .

  1. (i) The equation

    (2.3) $$ \begin{align} 2^{x}+p^{y}=q^{z},\quad x,y,z \in \mathbb{N} \end{align} $$
    has at most one solution $(x,y,z)$ with $2\mid y$ and this solution has $z=1$ , except for $(p,q,x,y,z)=(3,5,4,2,2),~(5,3,1,2,3),~(7,3,5,2,4)$ and $(11,5,2,2,3)$ .
  2. (ii) Equation (2.3) has at most one solution $(x,y,z)$ with $2 \mid x$ and $2\nmid y$ .

  3. (iii) Equation (2.3) has at most one solution $(x,y,z)$ with $2 \nmid xy$ .

Remark 2.10. The reference [Reference Le14] is written in Chinese and the proof of the theorems mentioned is rather complicated. In the present case, this lemma can be easily obtained using the tools in [Reference Bilu, Hanrot and Voutier3, Reference Le15, Reference Voutier24].

3 Further lemmas on (1.1) for $a=2$

Let $a=2$ and let b and c be fixed coprime odd positive integers with $\min \{b,c\}\ge 3$ . In this section, we give some results on the solutions $(x,y,z)$ of the equation

(3.1) $$ \begin{align} 2^{x}+b^{y}=c^{z},\quad x,y,z\in \mathbb{N},\ \min\{x,y,z\}>1. \end{align} $$

Lemma 3.1.

  1. (i) If $f(b)\ne f(c)$ , then (3.1) has no solutions $(x,y,z)$ with $2 \nmid yz$ .

  2. (ii) If $f(b)=f(c)$ and $g(b)\ne g(c)$ , then all the solutions $(x,y,z)$ of (3.1) with $2 \nmid yz$ satisfy $x=\min \{g(b),g(c)\}$ .

Proof. Let $(x,y,z)$ be a solution of (3.1) with $2 \nmid yz$ .

(i) Note that $f(b) \ne f(c)$ is equivalent to $b \not \equiv c \pmod 4$ . Since $2 \nmid yz$ , by (3.1), we have $2^{x}=c^{z}-b^{y} \equiv 2 \pmod 4$ . This means $x=1$ , which contradicts $x>1$ . Therefore, we obtain the conclusion (i).

(ii) Since $2 \nmid bc$ , we may write

(3.2) $$ \begin{align} b=2^{g(b)}b_{1}+f(b), \quad c=2^{g(c)}c_{1}+f(c),\quad b_{1},c_{1}\in \mathbb{N},~2\nmid b_{1}c_{1}. \end{align} $$

Assume that $f(b)=f(c)$ . Since $2 \nmid yz$ and $f(b)=f(c)\in \{-1,1\}$ , we see from (3.1) and (3.2) that

(3.3) $$ \begin{align} 2^{x}&=(2^{g(c)}c_{1}+f(c))^{z}-(2^{g(b)}b_{1}+f(b))^{y}\notag\\ &=\sum_{i=1}^{\max\{y,z\}}\bigg(\binom{z}{i}(2^{g(c)}c_{1})^{i}(f(c))^{z-i}-\binom{y}{i}(2^{g(b)}b_{1})^{i}(f(b))^{y-i}\bigg)\notag\\ &=(2^{g(c)}c_{1}z-2^{g(b)}b_{1}y)+\sum_{i=2}^{\max\{y,z\}}\bigg(\binom{z}{i}(2^{g(c)}c_{1})^{i}-\binom{y}{i}(2^{g(b)}b_{1})^{i}\bigg)(f(c))^{i+1}. \end{align} $$

When $g(b)\ne g(c)$ , since $2 \nmid b_{1}c_{1}yz$ , we have

$$ \begin{align*} 2^{\min\{g(b),g(c)\}}\,\|\; 2^{g(c)}c_{1}z-2^{g(b)}b_{1}y \end{align*} $$

and

$$ \begin{align*} \sum_{i=2}^{\max\{y,z\}}\bigg(\binom{z}{i}(2^{g(c)}c_{1})^{i}-\binom{y}{i}(2^{g(b)}b_{1})^{i}\bigg)(f(c))^{i+1} \equiv 0 \pmod{2^{\min\{g(b),g(c)\}+1}}. \end{align*} $$

Since $\min \{g(b),g(c)\}\ge 2$ , we see from (3.3) that $x=\min \{g(b),g(c)\}$ and the conclusion (ii) is obtained.

Lemma 3.2. All solutions $(x,y,z)$ of (3.1) with $\max \{b,c\}> 100$ satisfy

(3.4) $$ \begin{align} x<16460(\log b)(\log c),~y<14261\log c,~z<14261\log b\quad \text{if \,}2^{x}<c^{0.8z}, \end{align} $$

and

(3.5) $$ \begin{align} x<1784(\log b)(\log c),~y<1236\log c,~z<1236\log b\quad \text{if \,}2^{x}>c^{0.8z}. \end{align} $$

Proof. We first consider the case $2^{x}<c^{0.8z}$ . By (3.1) with $\max \{b,c\}> 100$ , we have $b^{y}>2^{x}$ and

(3.6) $$ \begin{align} z \log c &=\log(b^{y}+2^{x})=y\log b+\log \bigg(1+\frac{2^{x}}{b^{y}}\bigg)\notag\\ &<y \log b + \frac{2^{x}}{b^{y}}=y\log b+\frac{2^{x+1}}{2b^{y}}<y\log b+\frac{2c^{0.8z}}{c^{z}} =y\log b+\frac{2}{c^{z/5}}. \end{align} $$

Let $(\alpha _{1},\alpha _{2},\beta _{1},\beta _{2})=(c,b,z,y)$ and $\Lambda =z\log c - y\log b$ . By (3.6), $0<\Lambda <2/c^{z/5}$ and

(3.7) $$ \begin{align} \log2-\log|\Lambda|>\frac{z}{5}\log c. \end{align} $$

Since $\min \{b,c\}\ge 3$ , using Lemma 2.2, we have

(3.8) $$ \begin{align} \log|\Lambda|>-25.2(\log c)(\log b)\bigg(\max\bigg\{10,0.38+\log\bigg(\frac{z}{\log b}+\frac{y}{\log c}\bigg)\bigg\}\bigg)^{2}. \end{align} $$

When $10 \ge 0.38+\log (z/\!\log b+y/\!\log c)$ , by (3.7) and (3.8), we have

$$ \begin{align*} \log 2+2520(\log c)(\log b)>\frac{z}{5}\log c, \end{align*} $$

which gives

(3.9) $$ \begin{align} z<12601\log b. \end{align} $$

When $10<0.38+\log (z/\!\log b+y/\!\log c)$ , by (3.6), (3.7) and (3.8), we have

$$ \begin{align*} &\log 2 +25.2(\log c)(\log b)\bigg(0.38+\log\bigg(\frac{2z}{\log b}\bigg)\bigg)^{2}\\ &\quad>\log 2+25.2(\log c)(\log b)\bigg(0.38+\log \bigg(\frac{z}{\log b}+\frac{y}{\log c}\bigg)\bigg)^{2} >\frac{z}{5}\log c, \end{align*} $$

which gives

(3.10) $$ \begin{align} \frac{5\log 2}{(\log b)(\log c)}+126\bigg(0.38+\log 2+\log \bigg(\frac{z}{\log b}\bigg)\bigg)^{2}>\frac{z}{\log b}. \end{align} $$

Since $(\log b)(\log c)> (\log 3)(\log 100)$ , we can calculate from (3.10) that z satisfies

(3.11) $$ \begin{align} z<14261\log b. \end{align} $$

Therefore, since $y \log b<z \log c$ and $x \log 2<(4z \log c)/5$ , by (3.9) and (3.11), we obtain (3.4).

Next, we consider the case $2^{x}>c^{0.8z}$ . Let $(\alpha _{1},\alpha _{2},\beta _{1},\beta _{2})=(cf(c),bf(b),z,y)$ and $\Lambda ^{\prime }=(cf(c))^{z}-(bf(b))^{y}$ . Since $x \ge 2$ , by (3.1) and (3.2), we have $|\Lambda ^{\prime }|=2^{x}$ , that is, ${\mathop{\mathrm{ord}}\nolimits}_{2}(|\Lambda ^{\prime }|)=x$ . Since $\min \{|cf(c)|,|b(f(b)|\}=\min \{b,c\}\ge 3$ and $cf(c)\equiv bf(b)\equiv 1 \pmod 4$ , by Lemma 2.3,

(3.12) $$ \begin{align} x<19.55(\log c)(\log b) \bigg(\max\bigg\{12\log 2,0.4+\log(2\log2)+\log\bigg(\frac{z}{\log b}+\frac{y}{\log c}\bigg)\bigg\}\bigg)^{2}. \end{align} $$

However, since $2^{x}>c^{0.8z}$ ,

(3.13) $$ \begin{align} x>\frac{0.8z\log c}{\log 2}. \end{align} $$

The combination of (3.12) and (3.13) yields

(3.14) $$ \begin{align} z <16.94(\log b) \bigg(\max\bigg\{12\log 2,0.4+\log(2\log 2)+\log\bigg(\frac{z}{\log b}+\frac{y}{\log c}\bigg)\bigg\}\bigg)^{2}. \end{align} $$

When $12\log 2 \ge 0.4+\log (2\log 2)+\log (z/\!\log b+y/\!\log c)$ , by (3.14), we get $z<1172\log b$ . When $12\log 2<0.4+\log (2\log 2)+\log (z/\!\log b+y/\!\log c)$ , by (3.6) and (3.14), we have

$$ \begin{align*} \frac{z}{\log b}&<16.94\bigg(0.4+\log(2\log2)+\log\bigg(\frac{z}{\log b}+\frac{y}{\log c}\bigg)\bigg)^{2}\\ &<16.94\bigg(0.4+\log(2\log2)+\log\bigg(\frac{2z}{\log b}\bigg)\bigg)^{2}, \end{align*} $$

whence

(3.15) $$ \begin{align} z<1236\log b. \end{align} $$

Hence, if $2^{x}>c^{0.8z}$ , then all the solutions $(x,y,z)$ of (3.1) satisfy (3.15). Therefore, since $y \log b<z \log c$ and $x \log 2<z \log c$ , by (3.15), we obtain (3.5).

Lemma 3.3. Assume that $x=\min \{g(b),g(c)\}\le 23$ . Then, all solutions $(x,y,z)$ of (3.1) satisfy

$$ \begin{align*} y<2530\log c, \quad z<2530\log b. \end{align*} $$

Proof. The proof proceeds along the same lines as that of the first half of Lemma 3.2. Since $2^{x} \le 2^{g(b)}\le b+1 < b^{y}$ , we see from (3.1) that

(3.16) $$ \begin{align} 0<\Lambda:=z\log c-y\log b=\log\bigg(1+\frac{2^{x}}{b^{y}}\bigg)<\frac{2^{x}}{b^{y}}<\frac{2^{x+1}}{c^{z}}, \end{align} $$

which, together with the assumption $x \le 23$ , implies that

(3.17) $$ \begin{align} 24\log 2 - \log|\Lambda|> z \log c. \end{align} $$

We know by Lemma 2.2 that (3.8) holds.

When $10 \ge 0.38+\log (z/\!\log b+y/\!\log c)$ , by (3.8) and (3.17),

$$ \begin{align*} 24\log 2+2520(\log c)(\log b)> z \log c, \end{align*} $$

whence

(3.18) $$ \begin{align} z<2530\log b. \end{align} $$

When $10<0.38+\log (z/\!\log b+y/\!\log c)$ , by (3.8) and (3.17),

$$ \begin{align*} 24\log 2+25.2(\log c)(\log b)\bigg(0.38+\log \bigg(\frac{2z}{\log b}\bigg)\bigg)^{2}> z \log c, \end{align*} $$

which together with $(\log b)(\log c) \ge (\log 3)(\log 5)$ yields

(3.19) $$ \begin{align} z<1879\log b. \end{align} $$

The inequalities in the lemma now follow from (3.18), (3.19) and $y \log b < z \log c$ .

Lemma 3.4. If $(x,y,z)$ is a solution of (3.1) with $2 \nmid yz$ , then $\gcd (y,z)=1$ .

Proof. Let $d=\gcd (y,z)$ . Then we have

(3.20) $$ \begin{align} y=dY, \quad z=dZ,\quad Y,Z \in \mathbb{N}. \end{align} $$

By (3.1) and (3.20),

(3.21) $$ \begin{align} 2^{x}=c^{z}-b^{y}=(c^{Z})^{d}-(b^{Y})^{d}=(c^{Z}-b^{Y})(c^{Z(d-1)}+\cdots+b^{Y(d-1)}). \end{align} $$

Since $2 \nmid yz$ , we have $2 \nmid d$ . Since $2 \nmid bc$ , if $d>1$ , then $c^{Z(d-1)}+\cdots +b^{Y(d-1)}$ is an odd positive integer greater than $1$ contradicting (3.21). So we must have $d=1$ .

By Lemmas 2.4 and 2.5, we can directly obtain the next two lemmas.

Lemma 3.5. Equation (3.1) has only the solution $(b,c,x,y,z)=(11,5,2,2,3)$ satisfying $2 \mid y$ and $2 \nmid z$ .

Lemma 3.6. Equation (3.1) has only the solution $(b,c,x,y,z)=(17,71,7,3,2)$ satisfying $2 \nmid y$ and $2 \mid z$ .

Lemma 3.7. Equation (3.1) has only the solutions

(3.22) $$ \begin{align} (b,c,x,y,z)=(7,3,5,2,4) \end{align} $$

and

(3.23) $$ \begin{align} (b,c,x,y,z)=(2^{t}-1,2^{t}+1,t+2,2,2),\quad t \in \mathbb{N},~t \ge 2 \end{align} $$

satisfying $2 \mid y$ and $2 \mid z$ .

Proof. Let $(x,y,z)$ be a solution of (3.1) with $2 \mid y$ and $2 \mid z$ . Then, $2^{x}=c^{z}-b^{y}=(c^{z/2}+b^{y/2})(c^{z/2}-b^{y/2})$ . Further, since $\gcd (c^{z/2}+b^{y/2},c^{z/2}-b^{y/2})=2$ ,

$$ \begin{align*} c^{z/2}+b^{y/2}=2^{x-1}, \quad c^{z/2}-b^{y/2}=2, \end{align*} $$

which gives

(3.24) $$ \begin{align} c^{z/2}=2^{x-2}+1, \quad b^{y/2}=2^{x-2}-1. \end{align} $$

Since $b>1$ , we see from the second equality of (3.24) that $y/2$ is odd. If ${y/2>1}$ , then $2^{x-2}=b^{y/2}+1=(b+1)(b^{y/2-1}-b^{y/2-2}+\cdots -b+1)$ , where $b^{y/2-1}-b^{y/2-2}+\cdots -b+1$ is an odd positive integer greater than $1$ , a contradiction. So we have

(3.25) $$ \begin{align} \frac{y}{2}=1, \quad b=2^{x-2}-1,\quad x \ge 4. \end{align} $$

Similarly, if $z/2$ is odd, then from the first equality of (3.24),

(3.26) $$ \begin{align} \frac{z}{2}=1, \quad c=2^{x-2}+1. \end{align} $$

Hence, by (3.25) and (3.26), we obtain (3.23).

If $z/2$ is even, then $2^{x-2}=c^{z/2}-1=(c^{z/4}+1)(c^{z/4}-1)$ , whence

(3.27) $$ \begin{align} c^{z/4}+1=2^{x-3}, \quad c^{z/4}-1=2. \end{align} $$

Therefore, by (3.25) and (3.27), we obtain (3.22). The lemma is proved.

Here and below, we assume that $(x_{1},y_{1},z_{1})$ and $(x_{2},y_{2},z_{2})$ are two distinct solutions of (3.1). We can further assume without loss of generality that $x_{1} \le x_{2}$ .

Lemma 3.8. We have $2 \nmid y_{1}y_{2}z_{1}z_{2}$ .

Proof. By Lemmas 3.5, 3.6 and 3.7, if $2 \mid y_{1}y_{2}z_{1}z_{2}$ , then

(3.28) $$ \begin{align} (b,c)\in \{(11,5),(17,71),(7,3),(2^{t}-1,2^{t}+1)\},\quad t \in \mathbb{N},~t \ge 2. \end{align} $$

However, by Lemma 2.6, we can eliminate the cases $(b,c)=(11,5)$ , $(17,71)$ and $(7,3)$ . Alternatively, by Lemma 2.7, if $(a,b,c)=(2,2^{t}-1,2^{t}+1)$ , then (1.1) has only two solutions $(x,y,z)=(1,1,1)$ and $(t+2,2,2)$ . Therefore, we can eliminate the cases $(b,c)=(2^{t}-1,2^{t}+1) (t=2,3,\ldots )$ in (3.28). Thus, the lemma is proved.

Lemma 3.9. We have $y_{1}z_{2} \ne y_{2}z_{1}$ .

Proof. By Lemmas 3.4 and 3.8, $\gcd (y_{1},z_{1})=\gcd (y_{2},z_{2})=1$ . Hence, if $y_{1}z_{2}=y_{2}z_{1}$ , then $y_{1}\mid y_{2}$ and $y_{2}\mid y_{1}$ . This implies that $y_{1}=y_{2}$ , $z_{1}=z_{2}$ and $(x_{1},y_{1},z_{1})=(x_{2},y_{2},z_{2})$ , a contradiction. The lemma is proved.

Lemma 3.10. If $\max \{b,c\}>8\times 10^{6}$ , then $2^{x_{1}}<c^{0.8z_{1}}$ .

Proof. By (3.1), $b^{y_{1}}\equiv c^{z_{1}}\pmod {2^{x_{1}}}$ and $b^{y_{2}}\equiv c^{z_{2}}\pmod {2^{x_{2}}}$ . Since $x_{1} \le x_{2}$ , we get $b^{y_{1}y_{2}}\equiv c^{z_{1}y_{2}}\equiv c^{z_{2}y_{1}}\pmod {2^{x_{1}}}$ and $c^{z_{1}z_{2}}\equiv b^{y_{1}z_{2}}\equiv b^{y_{2}z_{1}}\pmod {2^{x_{1}}}$ . Consequently, $b^{|y_{1}z_{2}-y_{2}z_{1}|}\equiv c^{|y_{1}z_{2}-y_{2}z_{1}|}\equiv 1 \pmod {2^{x_{1}}}$ . Let $m =\max \{b,c\}$ . We have

(3.29) $$ \begin{align} m^{|y_{1}z_{2}-y_{2}z_{1}|}\equiv 1 \pmod{2^{x_{1}}}. \end{align} $$

By Lemmas 3.8 and 3.9, $|y_{1}z_{2}-y_{2}z_{1}|$ is an even positive integer. Since $2 \nmid m$ , by Lemma 2.1,

(3.30) $$ \begin{align} 2^{g(m)+{\mathop{\mathrm{ord}}\nolimits}_{2}|y_{1}z_{2}-y_{2}z_{1}|}\,\|\; m^{|y_{1}z_{2}-y_{2}z_{1}|}-1. \end{align} $$

Hence, by (3.29) and (3.30),

(3.31) $$ \begin{align} 2^{g(m)+{\mathop{\mathrm{ord}}\nolimits}_{2}|y_{1}z_{2}-y_{2}z_{1}|} \ge 2^{x_{1}}. \end{align} $$

Further, since $2^{g(m)}\le m+1$ and $2^{{\mathop{\mathrm{ord}}\nolimits}_{2}|y_{1}z_{2}-y_{2}z_{1}|}\le |y_{1}z_{2}-y_{2}z_{1}|$ , by (3.31),

(3.32) $$ \begin{align} (m+1)|y_{1}z_{2}-y_{2}z_{1}|\ge 2^{x_{1}}. \end{align} $$

Furthermore, by Lemma 3.2, if $2^{x_{1}}>c^{0.8z_{1}}$ , then

(3.33) $$ \begin{align} |y_{1}z_{2}-y_{2}z_{1}| <\max\{y_{1}z_{2},y_{2}z_{1}\}<14261\times 1236\,(\log b)(\log c) <(4199\log m)^{2}. \end{align} $$

Hence, by (3.32) and (3.33),

(3.34) $$ \begin{align} (4199\log m)^{2}(m+1)>2^{x_{1}}. \end{align} $$

Recall that $c^{z_{1}}>b^{y_{1}}$ , $2\nmid y_{1}z_{1}$ and $\min \{y_{1},z_{1}\}\ge 3$ . We have $c^{z_{1}} \ge m^{3}$ . Therefore, if $2^{x_{1}}>c^{0.8z_{1}}$ , then from (3.34), we get

$$ \begin{align*} (4199\log m)^{2}(m+1)>m^{2.4}, \end{align*} $$

whence $m < 8\times 10^{6}$ . Thus, if $m>8\times 10^{6}$ , then $2^{x_{1}}<c^{0.8z_{1}}$ .

4 Proof of Theorem 1.2

Obviously, by Lemma 2.8, the theorem holds for $c=2$ . Moreover, in case a, b and c are distinct primes, we only have to consider $(a,b,c)=(2,p,q)$ , where p and q are odd primes with $p \ne q$ . Then, (1.1) can be rewritten as (2.3). Further, by Lemma 2.6, the theorem holds for $(p,q)=(3,5),~(5,3),~(7,3)$ and $(11,5)$ .

We now assume that $N^{\prime }(2,p,q)>1$ . It follows that (2.3) has two solutions $(x_{1},y_{1},z_{1})$ and $(x_{2},y_{2},z_{2})$ with $\min \{x_{j},y_{j},z_{j}\}>1$ for $j=1,2$ . Since we have excluded the cases $(p,q)=(3,5),~(5,3),~(7,3)$ and $(11,5)$ , by Lemma 2.9, we can assume without loss of generality that $2 \mid x_{1}$ , $2\nmid x_{2}$ and $2\nmid y_{1}y_{2}$ . Then

(4.1) $$ \begin{align} 2^{x_{1}}+p^{y_{1}}=q^{z_{1}},\quad 2^{x_{2}}+p^{y_{2}}=q^{z_{2}}. \end{align} $$

If $p\ne 3$ , since $2\nmid y_{1}y_{2}$ and $p^{y_{1}}\equiv p^{y_{2}}\equiv p \pmod 3$ , then from (4.1),

(4.2) $$ \begin{align} q^{z_{1}}\equiv 1+p \pmod3,\quad q^{z_{2}}\equiv 2+p\pmod3. \end{align} $$

However, since $p \ne 3$ , $1+p\not \equiv 2+p\pmod 3$ and $3 \mid (1+p)(2+p)$ , (4.2) is false.

If $p=3$ , by (4.1), then we have $q^{z_{1}}\equiv 1 \pmod 3$ and $q^{z_{2}} \equiv 2 \pmod 3$ , whence $q \equiv 2 \pmod 3$ , $2\mid z_{1}$ and $2 \nmid z_{2}$ . Hence, by the first equality of (4.1),

(4.3) $$ \begin{align} q^{z_{1}/2}+2^{x_{1}/2}=3^{y_{1}},\quad q^{z_{1}/2}-2^{x_{1}/2}=1. \end{align} $$

Eliminating $q^{z_{1}/2}$ from (4.3), we have

(4.4) $$ \begin{align} 2^{x_{1}/2+1}=3^{y_{1}}-1. \end{align} $$

However, since $x_{1}/2+1 \ge 2$ and $2\nmid y_{1}$ , we get from (4.4) that $0 \equiv 2^{x_{1}/2+1}\equiv 3^{y_{1}}-1\equiv 3-1\equiv 2 \pmod 4$ , a contradiction. Thus, the theorem is proved.

5 Proof of Theorem 1.3

To show Theorem 1.3, we need the following lemma.

Lemma 5.1. If $a=2$ , $f(b)=f(c)$ , $g(b)\ne g(c)$ and $\max \{b,c\}>8.4\times 10^{6}$ , then Conjecture 1.1 is true.

Proof. Assume that $a=2$ , $f(b)=f(c)$ , $g(b)\ne g(c)$ , $\max \{b,c\}>8.4\times 10^{6}$ and $N^{\prime }(a,b,c)>1$ . Then, by the conclusions of Lemma 3.8 and of Lemma 3.1(ii), (3.1) has two distinct solutions $(x_{1},y_{1},z_{1})$ and $(x_{2},y_{2},z_{2})$ with

(5.1) $$ \begin{align} x_{1}=x_{2}. \end{align} $$

Since $(x_{1},y_{1},z_{1})\ne (x_{2},y_{2},z_{2})$ , by (5.1), we may assume without loss of generality that

(5.2) $$ \begin{align} y_{1}<y_{2},\quad z_{1}<z_{2}. \end{align} $$

Let

(5.3) $$ \begin{align} \Lambda_{j}=z_{j}\log c-y_{j}\log b,\quad j=1,2. \end{align} $$

We see from (3.6) and (5.3) that

(5.4) $$ \begin{align} 0<\Lambda_{j}=\log\bigg(1+\frac{2^{x_{j}}}{b^{y_{j}}}\bigg),\quad j=1,2. \end{align} $$

Further, by (5.1), (5.2) and (5.4),

(5.5) $$ \begin{align} 0<\Lambda_{2}<\Lambda_{1}=\log\bigg(1+\frac{2^{x_{1}}}{b^{y_{1}}}\bigg). \end{align} $$

Furthermore, by Lemma 3.10, we have $2^{x_{1}}<c^{0.8z_{1}}$ . Hence, by (3.6) and (5.5),

(5.6) $$ \begin{align} 0<\Lambda_{2}<\Lambda_{1}<\frac{2}{c^{z_{1}/5}}. \end{align} $$

However, by Lemmas 3.8 and 3.9, $|y_{1}z_{2}-y_{2}z_{1}|$ is an even positive integer. So,

(5.7) $$ \begin{align} |y_{1}z_{2}-y_{2}z_{1}| \ge 2. \end{align} $$

By (5.3),

(5.8) $$ \begin{align} |y_{1}z_{2}-y_{2}z_{1}|&=\frac{1}{\log c}|y_{1}(z_{2}\log c)-y_{2}(z_{1}\log c)|\notag\\ &=\frac{1}{\log c}|y_{1}(y_{2}\log b+\Lambda_{2})-y_{2}(y_{1}\log b+\Lambda_{1})|\notag\\ &=\frac{1}{\log c}|y_{1}\Lambda_{2}-y_{2}\Lambda_{1}|. \end{align} $$

Since $y_{1} \Lambda _{2}>0$ and $y_{2}\Lambda _{1}>0$ by (5.4), we see from (5.8) that

(5.9) $$ \begin{align} |y_{1}z_{2}-y_{2}z_{1}|<\max\bigg\{\frac{y_{1}\Lambda_{2}}{\log c},\frac{y_{2}\Lambda_{1}}{\log c}\bigg\}. \end{align} $$

Further, by (5.2) and Lemma 3.2,

(5.10) $$ \begin{align} \frac{y_{1}}{\log c}<\frac{y_{2}}{\log c}<14261. \end{align} $$

Hence, by (5.6), (5.7), (5.9) and (5.10),

$$ \begin{align*} 2 \le |y_{1}z_{2}-y_{2}z_{1}|<\max\{14261\Lambda_{2},14261\Lambda_{1}\}=14261\Lambda_{1}<\frac{2\times 14261}{c^{z_{1}/5}}, \end{align*} $$

whence we obtain

(5.11) $$ \begin{align} c^{z_{1}/5}<14261. \end{align} $$

However, since $\max \{b,c\}>8.4\times 10^{6}$ and $c^{z_{1}}\ge (\max \{b,c\})^{3}$ , (5.11) is false. Thus, we have $N^{\prime }(a,b,c)\le 1$ if $a=2$ , $f(b)=f(c)$ , $g(b)\ne g(c)$ and $\max \{b,c\}>8.4\times 10^{6}$ .

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3.

Obviously, by the conclusion of Lemma 3.1(i), Conjecture 1.1 is true if $a=2$ and $f(b)\ne f(c)$ . We now assume that $a=2$ , $f(b)=f(c)$ , $g(b)\ne g(c)$ and $N^{\prime }(a,b,c)>1$ . Moreover, by Lemma 5.1, we may assume that

(5.12) $$ \begin{align} \max\{b,c\} < 8.4\times 10^{6}. \end{align} $$

Then, by the conclusion of Lemma 3.1(ii), (3.1) has two distinct solutions $(x_{1},y_{1},z_{1})$ and $(x_{2},y_{2},z_{2})$ with

(5.13) $$ \begin{align} x_{1}=x_{2}=\min\{g(b),g(c)\}, \end{align} $$

and we may assume that $y_{1}<y_{2}$ and $z_{1}<z_{2}$ . Further, by (5.12), we have $2^{g(b)}\le b+1 \le 8.4\times 10^{6}$ , which together with (5.13) implies that

(5.14) $$ \begin{align} x_{1}=x_{2}=\min\{g(b),g(c)\}\le 23. \end{align} $$

It follows from Lemma 3.3 that

(5.15) $$ \begin{align} \frac{y_{1}}{\log c}<\frac{y_{2}}{\log c}<2530, \quad \frac{z_{1}}{\log b}<\frac{z_{2}}{\log b}<2530. \end{align} $$

Furthermore, by (3.16) and (5.14),

(5.16) $$ \begin{align} 0<\Lambda_{1}:=z_{1}\log c-y_{1}\log b<\frac{2^{x_{1}+1}}{c^{z_{1}}}\le \frac{2^{24}}{c^{z_{1}}}. \end{align} $$

Thus, by the same argument as the proof of Lemma 5.1, we see from (5.15) and (5.16) that

$$ \begin{align*} 2 \le|y_{1}z_{2}-y_{2}z_{1}|<2530\Lambda_{1}<\frac{2^{24}\times 2530}{c^{z_{1}}}, \end{align*} $$

whence we obtain

$$ \begin{align*} b^{y_{1}}<c^{z_{1}}<2^{23}\times 2530 < 2.123\times 10^{10}. \end{align*} $$

Consequently, it only remains to show that (3.1) has no solutions if

$$ \begin{align*} 3 \le b \le 2767,~3\le c \le 2767,~2\le x_{1} \le 23,~3\le y_{1} \le 21,~3\le z_{1} \le 21 \end{align*} $$

with $2 \nmid bcy_{1}z_{1}$ (by Lemma 3.8). We checked that the above claim is true by a simple program in PARI/GP [23] with precision $100$ . Indeed, the result showed that for any c, $x_{1}$ , $y_{1}$ , $z_{1}$ in the above ranges, the fractional part of $(c^{z_{1}}-2^{x_{1}})^{1/y_{1}}$ is greater than $10^{-6}$ . The computation time was within $1$ minute. Thus, the theorem is proved.

Acknowledgement

The authors thank the referee for reading the draft very carefully and putting forward some valuable suggestions.

Footnotes

The third author is supported by JSPS KAKENHI Grant Number 18K03247.

References

Bennett, M. A. and Skinner, C. M., ‘Ternary Diophantine equations via Galois representations and modular forms’, Canad. J. Math. 56 (2004), 2354.CrossRefGoogle Scholar
Beukers, F. and Schlickewei, H. P., ‘The equation $x+y = 1$ in finitely generated groups’, Acta Arith. 78 (1996), 189199.10.4064/aa-78-2-189-199CrossRefGoogle Scholar
Bilu, Y. F., Hanrot, G. and Voutier, P. M., ‘Existence of primitive divisors of Lucas and Lehmer numbers’, J. reine angew. Math. 539 (2001), 75122 (with an appendix by M. Mignotte).Google Scholar
Bugeaud, Y., ‘Linear forms in $p$ -adic logarithms and the Diophantine equation $\left({x}^n-1\right)/\left(x-1\right) = {y}^q$ ’, Math. Proc. Cambridge Philos. Soc. 127 (1999), 373381.10.1017/S0305004199003692CrossRefGoogle Scholar
Cao, Z.-F., ‘On the Diophantine equation ${a}^x+{b}^y = {c}^z$  I’, Chinese Sci. Bull. 31 (1986), 16881690 (in Chinese).Google Scholar
Cohn, J. H. E., ‘The Diophantine equation ${x}^2+{2}^k = {y}^n$ ’, Arch. Math. (Basel) 59 (1992), 341344.CrossRefGoogle Scholar
Gel’fond, A. O., ‘Sur la divisibilité de la différence des puissances de deux nombres entiers par une puissance d’un idéal premier’, Mat. Sb. 7 (1940), 725.Google Scholar
Guy, R. K., Unsolved Problems in Number Theory, 3rd edn (Science Press, Beijing, 2007).Google Scholar
Hu, Y.-Z. and Le, M.-H., ‘A note on ternary purely exponential Diophantine equations’, Acta Arith. 171 (2015), 173182.CrossRefGoogle Scholar
Hu, Y.-Z. and Le, M.-H., ‘An upper bound for the number of solutions of ternary purely exponential Diophantine equations’, J. Number Theory 183 (2018), 6273.CrossRefGoogle Scholar
Hu, Y.-Z. and Le, M.-H., ‘An upper bound for the number of solutions of ternary purely exponential Diophantine equations II’, Publ. Math. Debrecen 95 (2019), 335354.CrossRefGoogle Scholar
Jeśmanowicz, L., ‘Several remarks on Pythagorean numbers’, Wiadom. Math. 1 (1955/1956), 196202 (in Polish).Google Scholar
Laurent, M., ‘Linear forms in two logarithms and interpolation determinants II’, Acta Arith. 133 (2008), 325348.CrossRefGoogle Scholar
Le, M.-H., ‘On the Diophantine equation ${a}^x+{b}^y = {c}^z$ ’, J. Changchun Teachers College 2 (1985), 5062 (in Chinese).Google Scholar
Le, M.-H., ‘Some exponential Diophantine equations I: The equation ${D}_1{x}^2-{D}_2{y}^2 = \lambda {k}^z$ ’, J. Number Theory 55 (1995), 209221.CrossRefGoogle Scholar
Le, M.-H., ‘On Cohn’s conjecture concerning the Diophantine equation ${x}^2+{2}^m = {y}^n$ ’, Arch. Math. (Basel) 78 (2002), 2635.CrossRefGoogle Scholar
Le, M.-H., Scott, R. and Styer, R., ‘A survey on the ternary purely exponential Diophantine equation ${a}^x+{b}^y = {c}^z$ ’, Surv. Math. Appl. 14 (2019), 109140.Google Scholar
Mahler, K., ‘Zur Approximation algebraischer Zahlen I: Über den grössten Primtreiler binärer Formen’, Math. Ann. 107 (1933), 691730.CrossRefGoogle Scholar
Miyazaki, T. and Pink, I., ‘Number of solutions to a special type of unit equations in two variables’, Preprint, 2020, arXiv:2006.15952.Google Scholar
Scott, R., ‘On the equation ${p}^x-{q}^y = c$ and ${a}^x+{b}^y = {c}^z$ ’, J. Number Theory 44 (1993), 153165.CrossRefGoogle Scholar
Scott, R. and Styer, R., ‘Number of solutions to ${a}^x+{b}^y = {c}^z$ ’, Publ. Math. Debrecen 88 (2016), 131138.CrossRefGoogle Scholar
Terai, N., ‘The Diophantine equation ${a}^x+{b}^y = {c}^z$ ’, Proc. Japan Acad. Ser. A Math. Sci. 70A (1994), 2226.Google Scholar
The PARI Group, PARI/GP, version 2.13.3, Bordeaux, 2021, available at http://pari.math.u-bordeaux.fr/.Google Scholar
Voutier, P. M., ‘Primitive divisors of Lucas and Lehmer sequences’, Math. Comp. 64 (1995), 869888.CrossRefGoogle Scholar