Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Charatonik, Janusz J.
and
Charatonik, Wlodzimierz J.
1997.
Periodic-recurrent property of some continua.
Bulletin of the Australian Mathematical Society,
Vol. 56,
Issue. 1,
p.
109.
Hosaka, Hiroshi
and
Kato, Hisao
1997.
Continuous maps of trees and nonwandering sets.
Topology and its Applications,
Vol. 81,
Issue. 1,
p.
35.
Kato, Hisao
1998.
The depth of centres of maps on dendrites.
Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics,
Vol. 64,
Issue. 1,
p.
44.
Efremova, Lyudmila S
and
Makhrova, Elena N
2001.
The dynamics of monotone maps of dendrites.
Sbornik: Mathematics,
Vol. 192,
Issue. 6,
p.
807.
Ефремова, Людмила Сергеевна
Efremova, Lyudmila Sergeevna
Махрова, Елена Николаевна
and
Makhrova, Elena Nikolaevna
2001.
Динамика монотонных отображений дендритов.
Математический сборник,
Vol. 192,
Issue. 6,
p.
15.
Efremova, L.S.
and
Makhrova, E.N.
2003.
On the Center of Continuous Maps of Dendrites.
Journal of Difference Equations and Applications,
Vol. 9,
Issue. 3-4,
p.
381.
Charatonik, Janusz J.
and
Illanes, Alejandro
2004.
Mappings on dendrites.
Topology and its Applications,
Vol. 144,
Issue. 1-3,
p.
109.
Efremova, L. S.
and
Makhrova, E. N.
2005.
On piecewise-monotone mappings with closed set of periodic points on dendrites.
Journal of Mathematical Sciences,
Vol. 126,
Issue. 5,
p.
1419.
Efremova, L. S.
and
Makhrova, E. N.
2005.
On piecewise-monotone mappings with closed set of periodic points on dendrites.
Journal of Mathematical Sciences,
Vol. 126,
Issue. 5,
p.
1419.
Martínez-de-la-Vega, Verónica
2007.
A strong characterization on the ΩEP-property.
Topology and its Applications,
Vol. 154,
Issue. 17,
p.
3032.
WANG, SUHUA
SHI, ENHUI
ZHOU, LIZHEN
and
SU, XUNLI
2009.
TOPOLOGICAL TRANSITIVITY AND CHAOS OF GROUP ACTIONS ON DENDRITES.
International Journal of Bifurcation and Chaos,
Vol. 19,
Issue. 12,
p.
4165.
MAI, JIEHUA
and
SHI, ENHUI
2009.
$\overline{R} = \overline{P}$ FOR MAPS OF DENDRITES X WITH Card(End(X)) < c.
International Journal of Bifurcation and Chaos,
Vol. 19,
Issue. 04,
p.
1391.
BALIBREA, F.
CARABALLO, T.
KLOEDEN, P. E.
and
VALERO, J.
2010.
RECENT DEVELOPMENTS IN DYNAMICAL SYSTEMS: THREE PERSPECTIVES.
International Journal of Bifurcation and Chaos,
Vol. 20,
Issue. 09,
p.
2591.
NAGHMOUCHI, ISSAM
2011.
DYNAMICS OF MONOTONE GRAPH, DENDRITE AND DENDROID MAPS.
International Journal of Bifurcation and Chaos,
Vol. 21,
Issue. 11,
p.
3205.
Sun, Taixiang
He, Qiuli
and
Xi, Hongjian
2013.
Intra-orbit separation of dense orbits of dendrite maps.
Chaos, Solitons & Fractals,
Vol. 57,
Issue. ,
p.
89.
WANG, SUHUA
SHI, ENHUI
ZHU, YUJUN
and
CHEN, BIN
2013.
AUSLANDER–YORKE CHAOS FOR GROUP ACTIONS ON DENDRITES.
International Journal of Bifurcation and Chaos,
Vol. 23,
Issue. 06,
p.
1350097.
Sun, Taixiang
He, Qiuli
Su, Dongwei
and
Xi, Hongjian
2014.
Dendrite maps whose every periodic point is a fixed point.
Chaos, Solitons & Fractals,
Vol. 65,
Issue. ,
p.
62.
Sun, Taixiang
Tao, Chunyan
Xi, Hongjian
and
Qin, Bin
2014.
Topological Limits andω-Limit Sets of the Dendrite Maps.
Journal of Dynamical Systems and Geometric Theories,
Vol. 12,
Issue. 2,
p.
165.
Sun, Taixiang
Chen, Zhanhe
Liu, Xinhe
and
Xi, Hongjian
2014.
Equicontinuity of dendrite maps.
Chaos, Solitons & Fractals,
Vol. 69,
Issue. ,
p.
10.
Abdelrazak, Jmel
2015.
Pointwise periodic homeomorphisms on dendrites.
Dynamical Systems,
Vol. 30,
Issue. 1,
p.
34.