Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T01:18:18.453Z Has data issue: false hasContentIssue false

A note on Kummer theory of division points over singular Drinfeld modules

Published online by Cambridge University Press:  17 April 2009

Anly Li
Affiliation:
Department of Mathematics, Fu-Jen University, Taipei, Taiwan, Republic of china e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we shall establish a Kummer theory of division points over singular Drinfeld modules which is in complete analogy with the classical one in number fields.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2001

References

[1]Bae, S. and Koo, J.K., ‘On the singular Drinfeld modules of rank 2’, Math. Z. 210 (1992), 267276.CrossRefGoogle Scholar
[2]Brown, K.S., cohomology of groups (Springer-Verlag, Berlin, Heidelberg, New york, 1982).CrossRefGoogle Scholar
[3]Chi, W.-C. and Li, A., ‘Kummer theory of division points over Drinfeld modules of rank one’, J. Pure Appl. Algebra 156 (2001), 171185.CrossRefGoogle Scholar
[4]Denis, L., ‘Géométrie diophantienne sur les modules de Drinfeld’, in Proceedings “The Arithemetic of Function Fields”, (Goss, D., Hayes, D. and Rosen, M., Editors) (Walter de Gruyter, Berlin, 1997), pp. 285302.Google Scholar
[5]Gekeler, E., ‘Zur arithmetic von Drinfeld modulnMath. Ann. 262 (1983), 167182.CrossRefGoogle Scholar
[6]Goss, D., ‘Drinfeld modules: cohomology and special functions’, in Proceedings of Symposia in the Pure Mathematics, Part 2, 55 (Amer. Math. Soc., Providence, R.I., 1994), PP. 309362.Google Scholar
[7]Goss, D., Basic structures of function field arithmetic (Springer-Verlag, Berlin, Heidelberg, New York, 1996).CrossRefGoogle Scholar
[8]Hayes, D., ‘Explicit class field theory in global function fields’, in Studies in Algebra and Number Theory, Advances in Math. 16 (Academic Press, New York, London, 1980), pp. 173217.Google Scholar
[9]Lang, S., Elliptic curves: Diophantine analysis (Springer-Verlag, Berlin, Heidelberg, New York, 1987).Google Scholar
[10]Lang, S., Elliptic functions (Springer-Verlag, Berlin, Heidelberg, New York, 1973).Google Scholar
[11]Ribet, K.A., ‘Dividing rational points on abelian varieties of CM-type’, Compositio Math. 33 (1976), 6974.Google Scholar
[12]Yu, J-K., ‘Isogenies of Drinfeld modules over finite fields’, J. Number Theory 54 (1995), 161171.CrossRefGoogle Scholar