Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T15:04:08.821Z Has data issue: false hasContentIssue false

A NOTE ON GENERALISED WALL–SUN–SUN PRIMES

Published online by Cambridge University Press:  28 February 2023

JOSHUA HARRINGTON
Affiliation:
Department of Mathematics, Cedar Crest College, Allentown, Pennsylvania, USA e-mail: [email protected]
LENNY JONES*
Affiliation:
Professor Emeritus of Mathematics, Department of Mathematics, Shippensburg University, Shippensburg, PA 17257, USA
Rights & Permissions [Opens in a new window]

Abstract

Let a and b be positive integers and let $\{U_n\}_{n\ge 0}$ be the Lucas sequence of the first kind defined by

$$ \begin{align*}U_0=0,\quad U_1=1\quad \mbox{and} \quad U_n=aU_{n-1}+bU_{n-2} \quad \mbox{for }n\ge 2.\end{align*} $$

We define an $(a,b)$-Wall–Sun–Sun prime to be a prime p such that $\gcd (p,b)=1$ and $\pi (p^2)=\pi (p),$ where $\pi (p):=\pi _{(a,b)}(p)$ is the length of the period of $\{U_n\}_{n\ge 0}$ modulo p. When $(a,b)=(1,1)$, such primes are known in the literature simply as Wall–Sun–Sun primes. In this note, we provide necessary and sufficient conditions such that a prime p dividing $a^2+4b$ is an $(a,b)$-Wall–Sun–Sun prime.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

1 Introduction

Throughout this note, for positive integers a and b, we let $\{U_n\}_{n\ge 0}$ be the Lucas sequence of the first kind [6] defined by

(1.1) $$ \begin{align} U_0=0,\quad U_1=1\quad \mbox{and} \quad U_n=aU_{n-1}+bU_{n-2} \quad \mbox{for }n\ge 2. \end{align} $$

The sequence $\{U_n\}_{n\ge 0}$ is periodic modulo any prime p with $\gcd (p,b)=1$ , and we denote by $\pi (p):=\pi _{(a,b)}(p)$ the length of the period of $\{U_n\}_{n\ge 0}$ modulo p.

We define an $(a,b)$ -Wall–Sun–Sun prime to be a prime p such that

(1.2) $$ \begin{align} \pi(p^2)=\pi(p). \end{align} $$

An $(a,1)$ -Wall–Sun–Sun prime is also known in the literature as an a-Wall–Sun–Sun prime [10] or an a-Fibonacci–Wieferich prime. Note that when $(a,b)=(1,1)$ , the sequence $\{U_n\}_{n\ge 0}$ is the well-known Fibonacci sequence. In this case, such primes are referred to simply as Wall–Sun–Sun primes [Reference Crandall, Dilcher and Pomerance3, 10] or Fibonacci–Wieferich primes [11]. However, at the time this note was written, no Wall–Sun–Sun primes were known to exist. The existence of Wall–Sun–Sun primes was first investigated by Wall [Reference Wall9] in 1960, and subsequently studied by the Sun brothers [Reference Sun and Sun8], who showed that the first case of Fermat’s last theorem is false for exponent p only if p is a Wall–Sun–Sun prime.

For an a-Wall–Sun–Sun prime p, it can be shown [Reference Elsenhans and Jahnel4, Reference Jones5] that the following conditions are equivalent:

  1. (1) $\pi (p^2)=\pi (p)$ ;

  2. (2) $U_{\pi (p)}\equiv 0 \pmod {p^2}$ ;

  3. (3) $U_{p-\delta _p}\equiv 0 \pmod {p^2}$ , where $\delta _p$ is the Legendre symbol $\big(\frac{a^2\, {+}\ 4}{p}\big)$ .

Because of this equivalence, various authors have chosen to use either item (2) or item (3) for the definition of an a-Wall–Sun–Sun prime. However, for the more general $(a,b)$ -Wall–Sun–Sun prime p, it turns out that, while item (1) implies the still-equivalent items (2) and (3), the converse is false in general. For example, with $(a,b)=(5,8)$ and $p=7$ , an easy calculation shows that items (2) and (3) are true, but item (1) is false since $\pi (49)=42$ and $\pi (7)=6$ . Because of this phenomenon, and the fact that Wall [Reference Wall9] was originally concerned with the impossibility of item (1) in the Wall–Sun–Sun situation, we have chosen to adopt (1.2) as our definition of an $(a,b)$ -Wall–Sun–Sun prime.

This note is motivated in part by recent results of Bouazzaoui [Reference Bouazzaoui1, Reference Bouazzaoui2] which show, under certain restrictions on a, b and p, that an odd prime p is an $(a,b)$ -Wall–Sun–Sun prime if and only if ${\mathbb Q}(\sqrt {a^2+4b})$ is not p-rational. We recall that a number field K is p-rational if the Galois group of the maximal pro-p-extension of K which is unramified outside p is a free pro-p-group of rank $r_2 + 1$ , where $r_2$ is the number of pairs of complex embeddings of K.

A second motivation for this note is recent work of the second author which, again under certain restrictions on a and p, establishes a connection between $(a,1)$ -Wall–Sun–Sun primes p and the monogenicity of certain power-compositional trinomials [Reference Jones5].

One restriction imposed on p in the work of these motivational articles is that $a^2+4b\not \equiv 0\pmod {p}$ . In this note, our focus is on primes p that divide $a^2+4b$ , and in this case, we provide necessary and sufficient conditions so that p is an $(a,b)$ -Wall–Sun–Sun prime. More precisely, we prove the following result.

Theorem 1.1. Let a and b be positive integers and let p be a prime divisor of $a^2+4b$ such that $\gcd (p,b)=1$ . Let $(a,b)_{m}:=(a \ \mathrm {mod}\ m,b \ \mathrm {mod}\ m)$ . Then

  • $p=2$ is an $(a,b)$ -Wall–Sun–Sun prime if and only if $(a,b)_4=(0,1)$ ;

  • $p=3$ is an $(a,b)$ -Wall–Sun–Sun prime if and only if

    $$ \begin{align*}(a,b)_9\in \{(1,8),(2,5),(4,2),(5,2),(7,5),(8,8)\};\end{align*} $$
  • $p\ge 5$ is never an $(a,b)$ -Wall–Sun–Sun prime.

2 Proof of Theorem 1.1

Note that the sequence $\{U_n\}_{n\ge 0}$ from (1.1) is explicitly

(2.1) $$ \begin{align} \{U_n\}=[0, 1, a, a^2+b, a^3+2ab, a^4+3a^2b+b^2, a^5+4a^3b+3ab^2, \ldots]. \end{align} $$

We let $\{U_n\}_p$ denote the sequence (2.1) modulo the prime p.

We first address the prime $p=2$ . Since $a^2+4b\equiv 0 \pmod {2}$ , it follows that ${a\equiv 0 \pmod {2}}$ . Then, since $\gcd (p,b)=1$ , we see from (2.1) that

$$ \begin{align*} \{U_n\}_2=[0,1,0,1,\ldots] \quad \mbox{and} \quad \{U_n\}_4=[0,1,a,b,0,b^2\ldots]. \end{align*} $$

Thus, $\pi (2)=2$ and $\pi (4)=2$ if and only if $(a,b)_4=(0,1)$ , which finishes the case ${p=2}$ .

Next, let $p=3$ . Since $a^2+4b\equiv 0 \pmod {3}$ , we see that $a^2\equiv -b \pmod {3}$ . Since $\gcd (3,b)=1$ , we deduce that $b\equiv 2 \pmod {3}$ and $a^2\equiv 1 \pmod {3}$ . Hence, from (2.1),

$$ \begin{align*} \{U_n\}_3=[0, 1, a, 0, 2a, 2, 0,1, \ldots], \end{align*} $$

where $a\equiv 1,2 \pmod {3}$ . We conclude that

$$ \begin{align*}\pi(3)=\begin{cases} 6&\mbox{if }a\equiv 1 \pmod{3},\\ 3&\mbox{if }a\equiv 2 \pmod{3}. \end{cases}\end{align*} $$

Observe that $\pi (9)=3$ if and only if

$$ \begin{align*}U_3=a^2+b\equiv 0 \pmod{9} \quad \mbox{and}\quad U_4=aU_3+bU_2\equiv ba\equiv 1 \pmod{9}.\end{align*} $$

Since $b \ \mathrm {mod}\ 9\in \{2,5,8\}$ , it follows that

$$ \begin{align*}\pi(9)=3 \quad\mbox{if and only if } (a,b)_9\in \{(2,5),(5,2),(8,8)\}.\end{align*} $$

If $\pi (9)=6$ , then

$$ \begin{align*}U_6=a^5+4a^3b+3ab^2=a(a^2+b)(a^2+3b)\equiv 0 \pmod{9},\end{align*} $$

which implies that $a^2+b\equiv 0\pmod {9}$ , since $a^2+b\equiv 0 \pmod {3}$ and $\gcd (3,b)=1$ . Hence, from (2.1), we have that

$$ \begin{align*} \{U_n\}_9=[0, 1, a, 0, ab, a^2b, 0,a^2b^2,\ldots], \end{align*} $$

where $a^2b^2\equiv 1 \pmod {9}$ . Thus,

(2.2) $$ \begin{align} ab\equiv -1\pmod{9}, \end{align} $$

since we are assuming that $\pi (9)\ne 3$ . Consequently,

$$ \begin{align*} \{U_n\}_9=[0, 1, a, 0, -1, -a, 0,1,\ldots]. \end{align*} $$

Recall that $b\equiv 2 \pmod {3}$ . Then, for each $b\ \mathrm {mod}\ 9\in \{2,5,8\}$ , solving (2.2) for a yields

$$ \begin{align*}\pi(9)=6 \quad\mbox{if and only if } (a,b)_9\in \{(1,8),(4,2),(7,5)\},\end{align*} $$

which completes the proof when $p=3$ .

Finally, suppose that $p\ge 5$ . Since

$$ \begin{align*}\pi(p^2)=\pi(p) \quad\mbox{implies } U_{\pi(p^2)}=U_{\pi(p)}\equiv 0 \pmod{p^2},\end{align*} $$

we show that $U_{\pi (p)}\not \equiv 0 \pmod {p^2}$ to establish that p is not an $(a,b)$ -Wall–Sun–Sun prime.

We claim that, for $n\ge 0$ ,

(2.3) $$ \begin{align} U_n\equiv\begin{cases} \dfrac{(-1)^{n/2}ab^{(n-4)/2}n(a^2(n^2-4)+4b(n^2-10))}{48} \pmod{p^2} &\mbox{if }n\mbox{ is even},\\[2ex] \dfrac{(-1)^{(n+1)/2}b^{(n-3)/2}n(a^2(n^2-1)+4b(n^2-7))}{24} \pmod{p^2} &\mbox{if }n\mbox{ is odd.} \end{cases} \end{align} $$

The proof is by induction on n. The claim is easily verified when $n\in \{0,1,2\}$ . Since p divides $a^2+4b$ , we see that $p^2$ divides $(a^2+4b)^2=a^4+8a^2b+16b^2$ . It follows that

(2.4) $$ \begin{align} a^4\equiv -8a^2b-16b^2\pmod{p^2}. \end{align} $$

Suppose that the claim holds for all $n\leq t$ for some even integer t. Then, modulo $p^2$ ,

$$ \begin{align*} U_{t+1} & \equiv aU_{t}+bU_{t-1}\\ & \equiv a\dfrac{(-1)^{t/2}ab^{(t-4)/2}t(a^2(t^2-4)+4b(t^2-10))}{48}\\ & \quad +b\dfrac{(-1)^{t/2}b^{(t-4)/2}(t-1)(a^2(t^2-2t)+4b(t^2-2t-6))}{24}\\ & \equiv(-1)^{t/2}b^{(t-4)/2}\dfrac{a^4(t^3-4t)+6(t+2)(t-3)tba^2+8(t-1)(t^2-2t-6)b^2}{48}\\ & \equiv\dfrac{(-1)^{(t+2)/2}b^{(t-2)/2}(t+1)(a^2t(t+2)+4b(t^2+2t-6))}{24}\quad (\mbox{by}\ (2.4))\\ & \equiv\dfrac{(-1)^{((t+1)+1)/2}b^{((t+1)-3)/2}(t+1)(a^2((t+1)^2-1)+4b((t+1)^2-7))}{24} \end{align*} $$

and

$$ \begin{align*} U_{t+2} & \equiv aU_{t+1}+bU_{t}\\ & \equiv a\dfrac{(-1)^{((t+1)+1)/2}b^{((t+1)-3)/2}(t+1)(a^2((t+1)^2-1)+4b((t+1)^2-7))}{24}\\ & \quad +b\dfrac{(-1)^{t/2}ab^{(t-4)/2}t(a^2(t^2-4)+4b(t^2-10))}{48}\\ & \equiv (-1)^{t/2}\dfrac{-ab^{(t-2)/2}(a^2(t+2)(t^2+4t)+4b(t+2)(t^2+t-6))}{48}\\ & \equiv \dfrac{(-1)^{(t+2)/2}ab^{((t+2)-4)/2}(t+2)(a^2((t+2)^2-4)+4b((t+2)^2-10))}{48}, \end{align*} $$

which establishes the claim.

For brevity of notation, we let $\lambda $ denote the order of $2^{-1}a$ modulo p. Then, since $\gcd (p,b)=1$ , it follows that $\pi (p)=p\lambda $ [Reference Renault7, Theorem 3(c)]. Since $\lambda $ divides $p-1$ , it follows that $\gcd (p,\lambda )=1$ . To finish the proof, we must show that $U_{\pi (p)}\not \equiv 0 \pmod {p^2}$ . We use (2.3).

If $\lambda \equiv 0 \pmod {2}$ , then modulo $p^2$ ,

$$ \begin{align*} U_{p\lambda} &\equiv \dfrac{(-1)^{p\lambda/2}ab^{(p\lambda-4)/2}p\lambda(a^2((p\lambda)^2-4)+4b((p\lambda)^2-10))}{48}\\ &\equiv\dfrac{(-1)^{p\lambda/2}ab^{(p\lambda-4)/2}p\lambda(a^2(-4)+4b(-10))}{48}\\ &\equiv\dfrac{(-1)^{\lambda (p+2)/2}4ab^{(p\lambda-4)/2}p\lambda(a^2+10b)}{48}. \end{align*} $$

Since $p\not \in \{2,3\}$ and does not divide a, b or $\lambda $ , if $U_{p\lambda }\equiv 0\pmod {p^2}$ , then p divides $a^2+10b$ . However, since p divides $a^2+4b$ , it follows that

$$ \begin{align*}a^2+10b\equiv 6b\not\equiv 0\pmod{p},\end{align*} $$

completing the proof in this case.

Suppose now that $\lambda \equiv 1 \pmod {2}$ . Then, modulo $p^2$ ,

$$ \begin{align*} U_{p\lambda} &\equiv \dfrac{(-1)^{(p\lambda+1)/2}b^{(p\lambda-3)/2}p\lambda(a^2((p\lambda)^2-1)+4b((p\lambda)^2-7))}{24}\\ &\equiv\dfrac{(-1)^{(p\lambda+1)/2}b^{(p\lambda-3)/2}p\lambda(a^2(-1)+4b(-7))}{24}\\ &\equiv\dfrac{(-1)^{(p\lambda+3)/2}b^{(p\lambda-3)/2}p\lambda(a^2+28b)}{24}. \end{align*} $$

Reasoning as in the previous case, we see that $U_{p\lambda }\equiv 0 \pmod {p^2}$ if and only if ${a^2+28b\equiv 0 \pmod {p}}$ . However, since $a^2+4b\equiv 0\pmod {p}$ , it follows that

$$ \begin{align*}a^2+28b\equiv 24b \not \equiv 0 \pmod{p},\end{align*} $$

which completes the proof of the theorem.

Acknowledgement

The authors thank the anonymous referee for the suggestions that helped to improve the paper.

References

Bouazzaoui, Z., ‘Fibonacci numbers and real quadratic $p$ -rational fields’, Period. Math. Hungar. 81(1) (2020), 123133.10.1007/s10998-020-00320-7CrossRefGoogle Scholar
Bouazzaoui, Z., ‘On periods of Fibonacci sequences and real quadratic p-rational fields’, Fibonacci Quart. 58(5) (2020), 103110.Google Scholar
Crandall, R., Dilcher, K. and Pomerance, C., ‘A search for Wieferich and Wilson primes’, Math. Comp. 66(217) (1997), 433449.10.1090/S0025-5718-97-00791-6CrossRefGoogle Scholar
Elsenhans, A.-S. and Jahnel, J., ‘The Fibonacci sequence modulo ${p}^2$ —An investigation by computer for $p<1014$ ’, Preprint, 2010, arXiv:1006.0824v1.Google Scholar
Jones, L., ‘A connection between the monogenicity of certain power-compositional trinomials and $k$ -Wall–Sun–Sun primes’, Preprint, 2022, arXiv:2211.14834.Google Scholar
Renault, M., ‘The period, rank, and order of the $\left(a,b\right)$ -Fibonacci sequence mod $m$ ’, Math. Mag. 86(5) (2013), 372380.10.4169/math.mag.86.5.372CrossRefGoogle Scholar
Sun, Z. H. and Sun, Z. W., ‘Fibonacci numbers and Fermat’s last theorem’, Acta Arith. 60(4) (1992), 371388.10.4064/aa-60-4-371-388CrossRefGoogle Scholar
Wall, D. D., ‘Fibonacci series modulo $m$ ’, Amer. Math. Monthly 67 (1960), 525532.10.1080/00029890.1960.11989541CrossRefGoogle Scholar