Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-03T19:25:06.124Z Has data issue: false hasContentIssue false

A note on existence of envelopes and covers

Published online by Cambridge University Press:  17 April 2009

Jianlong Chen
Affiliation:
Department of Mathematics and Mechanics, Southeast University, Nanjing 210096, People's Republic of China
Nanqing Ding
Affiliation:
Department of Mathematics, Nanjing University, Nanjing 210093, People's Republic of China
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove the following results for a ring R. (a) If C is a class of right R-modules closed under direct summands and isomorphisms, then every right R-module has an epic C-envelope if and only if C is closed under direct products and submodules. (b) If R is left T-coherent and pure injective as a right R-module, then every T-finitely presented right R-module has a T-flat envelope, (c) Let R be a left T-coherent ring and injective right R-modules be T-flat. If every finitely presented left R-module has a flat envelope, then every T-finitely presented right R-module has a projective cover.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1996

References

[1]Mayor, J. Asensio and Hernandez, J. Martinez, ‘Flat envelopes in commutative rings’, Israel J. Math. 62 (1988), 123128.CrossRefGoogle Scholar
[2]Mayor, J. Asensio and Hernandez, J. Martinez, ‘On flat and projective envelopes’, J. Algebra 160 (1993), 434440.CrossRefGoogle Scholar
[3]Azumaya, G., ‘Finite splitness and finite projectivity’, J. Algebra 106 (1987), 114134.CrossRefGoogle Scholar
[4]Camillo, V., ‘Coherence for polynomial rings’, J. Algebra 132 (1990), 7276.CrossRefGoogle Scholar
[5]Ding, N.Q. and Chen, J.L., ‘The flat dimensions of injective modules’, Manuscripta Math. 78 (1993), 165177.CrossRefGoogle Scholar
[6]Ding, N.Q. and Chen, J.L., ‘Relative coherence and preenvelopes’, Manuscripta Math. 81 (1993), 243262.CrossRefGoogle Scholar
[7]Enochs, E.E., ‘Injective and flat covers, envelopes and resolvents’, Israel J. Math. 39 (1981), 189209.CrossRefGoogle Scholar
[8]Enochs, E.E. and Jenda, O., ‘Resolvents and dimensions of modules and rings’, Arch. Math. 56 (1991), 528532.CrossRefGoogle Scholar
[9]Enochs, E.E., Jenda, O. and Xu, J., ‘The existence of envelopes’, Rend. Sera. Mat. Univ. Padova (1993), 4551.Google Scholar
[10]Faith, C., ‘Embeding torsionless modules in projectives’, Publ. Mat. 34 (1990), 379387.CrossRefGoogle Scholar
[11]Rozas, J.R. García and Torrecillas, B., ‘Relative injective covers’, Comm. Algebra 22 (1994), 29252940.CrossRefGoogle Scholar
[12]Gruson, L. and Jensen, C.U., ‘Dimensions cohomologiques relieés aux foncteurs ’ in Séminaire d'Algébre Paul Dubreil et Marie-Paule Malliavin, Lecture Notes in Math. 867 (Springer-Verlag, Berlin, Heidelberg, New York, 1981), pp. 234294.CrossRefGoogle Scholar
[13]Jain, S., ‘Flat and FP-injectivity’, Proc. Amer. Math. Soc. 41 (1973), 437442.CrossRefGoogle Scholar
[14]Jones, M.F., ‘Flatness and f-projectivity of torsion free modules and injective modules’, in Advances in Non-Commutative Ring Theory, Lecture Notes in Math. 951 (Springer-Verlag, Berlin, Heidelberg, New York, 1982), pp. 94116.CrossRefGoogle Scholar
[15]Maddox, B., ‘Absolutely pure modules’, Proc. Amer. Math. Soc. 18 (1967), 155158.CrossRefGoogle Scholar
[16]Megibben, C., ‘Absolutely pure modules’, Proc. Amer. Math. Soc. 26 (1970), 561566.CrossRefGoogle Scholar
[17]Nicholson, W.K., ‘Semiregular modules and rings’, Canad. J. Math. 28 (1976), 11051120.CrossRefGoogle Scholar
[18]Zimmermann-Huisgen, B., ‘Pure submodules of direct products of free modules’, Math. Ann. 224 (1976), 233245.CrossRefGoogle Scholar