Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-03T19:17:22.146Z Has data issue: false hasContentIssue false

Non-symmetric translation invariant Dirichlet forms on hypergroups

Published online by Cambridge University Press:  17 April 2009

Walter R. Bloom
Affiliation:
School of Mathematical and Physical Sciences, Murdoch University, Perth, Western Australia 6150, Australia
Herbert Heyer
Affiliation:
Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, D–7400 Tübingen 1, Federal Republic of Germany.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this note translation-invariant Dirichlet forms on a commutative hypergroup are studied. The main theorem gives a characterisation of an invariant Dirichlet form in terms of the negative definite function associated with it. As an illustration constructions of potentials arising from invariant Dirichlet forms are given. The examples of one- and two-dimensional Jacobi hypergroups yield specifications of invariant Dirichlet forms, particularly in the case of Gelfand pairs of compact type.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1987

References

[1]Annabi, H. and Trimèche, K., “Convolution généralisée sur le disque unité, C.R. Acad. Sci. Paris, Ser. A 278 (1974), 2124.Google Scholar
[2]Berg, C., “Suites définies négatives et espaces de Dirichlet sur la sphère”, Séminaire de Théorie du Potentiel dirgé par M. Brelot, G. Choquet et J. Deny, 13e année (1969/70) Expose 12, 18pp. Secretariat Math. Paris, 1971.Google Scholar
[3]Berg, C. and Forst, G., “Non-symmetric translation invariant Dirichlet forms”, Invent. Math. 21 (1973), 199212.CrossRefGoogle Scholar
[4]Bloom, W.R. and Heyer, H., “Convolution semigroups and resolvent families of measures on hypergoups”, Math. Z. 188 (1985), 449474.CrossRefGoogle Scholar
[5]Deny, J., Méthodes hilbertiennes en théorie du potentiel, Potential Theory (C.I.M.E. 1 Ciclo, Stresa, 1969) 121201 (Rome: Ed. Cremonese 1970).Google Scholar
[6]Heyer, H., “Probability theory on hypergroups: a survey” Probability Measures on Groups VII (Proc. Conf., Oberwolfach Math. Res. Inst.,Oberwolfach1983), (Lecture Notes in Math. 1064 (1984), 481550, Springer-Verlag).Google Scholar
[7]Jewett, R.I., “Spaces with an abstract convolution of measures”, Adv. in Math. 18 (1975), 1101.CrossRefGoogle Scholar
[8]Lasser, R., “On the Lévy-Hinčin formula for commutative hypergroups”, Probability Measures on Groups VII (Proc. Conf., Oberwolfach Math. Res. Inst.,Oberwolfach1983), (Lecture Notes in Math. 1064 (1984), 298308, Springer-Verlag).CrossRefGoogle Scholar
[9]Spector, R., “Measures invariantes sur les hypergroups”, Trans. Amer. Math. Soc. 239 (1978), 147165.CrossRefGoogle Scholar