Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-20T06:21:03.957Z Has data issue: false hasContentIssue false

NONSTANDARD ESTIMATION FOR THE VON MISES FISHER DISTRIBUTION

Published online by Cambridge University Press:  07 March 2018

MARYAM GHODSI*
Affiliation:
Department of Mathematics and Statistics, Jahrom Branch, Islamic Azad University, Jahrom, Iran email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Abstracts of Australasian PhD Theses
Copyright
© 2018 Australian Mathematical Publishing Association Inc. 

References

Chant, D., ‘On asymptotic tests of composite hypotheses in nonstandard conditions’, Biometrika 61(2) (1974), 291298.CrossRefGoogle Scholar
Chernoff, H., ‘On the distribution of the likelihood ratio’, Ann. Math. Statist. 25(3) (1954), 573578.CrossRefGoogle Scholar
Feder, P. I., ‘On the distribution of the log likelihood ratio test statistic when the true parameter is “near” the boundaries of the hypothesis regions’, Ann. Math. Statist. 39(6) (1968), 20442055.CrossRefGoogle Scholar
Moran, P. A. P., ‘Maximum-likelihood estimation in non-standard conditions’, Math. Proc. Cambridge Philos. Soc. 70 (1971), 441450.CrossRefGoogle Scholar
Neuenschwander, B. E. and Flury, B. D., ‘A note on Silvey’s (1959) theorem’, Statist. Probab. Lett. 36(3) (1997), 307317.CrossRefGoogle Scholar
Rotnitzky, A., Cox, D. R., Bottai, M. and Robins, J., ‘Likelihood-based inference with singular information matrix’, Bernoulli 6(2) (2000), 243284.CrossRefGoogle Scholar
Self, S. G. and Liang, K. Y., ‘Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions’, J. Amer. Statist. Assoc. 82(398) (1987), 605610.CrossRefGoogle Scholar
Silvapulle, M. J. and Sen, P. K., Constrained Statistical Inference: Order, Inequality, and Shape Constraints, Wiley Series in Probability and Statistics (Wiley, Hoboken, NJ, 2011).Google Scholar
Silvey, S. D., ‘The Lagrangian Multiplier test’, Ann. Math. Statist. 30(2) (1959), 389407.CrossRefGoogle Scholar
Vu, H. T. V. and Zhou, S., ‘Generalization of likelihood ratio tests under nonstandard conditions’, Ann. Statist. 25(2) (1997), 897916.CrossRefGoogle Scholar
Watson, G. S., Statistics on Spheres, University of Arkansas Lecture Notes in the Mathematical Sciences (Wiley, New York, 1983).Google Scholar