Hostname: page-component-55f67697df-twqc4 Total loading time: 0 Render date: 2025-05-10T04:14:17.221Z Has data issue: false hasContentIssue false

NONMONOGENITY OF NUMBER FIELDS DEFINED BY TRUNCATED EXPONENTIAL POLYNOMIALS

Published online by Cambridge University Press:  08 October 2024

ANUJ JAKHAR*
Affiliation:
Indian Institute of Technology (IIT) Madras, Chennai, India e-mail: [email protected]

Abstract

Let p be a prime number. Let $n\geq 2$ be an integer given by $n = p^{m_1} + p^{m_2} + \cdots + p^{m_r}$, where $0\leq m_1 < m_2 < \cdots < m_r$ are integers. Let $a_0, a_1, \ldots , a_{n-1}$ be integers not divisible by p. Let $K = \mathbb Q(\theta )$ be an algebraic number field with $\theta \in {\mathbb C}$ a root of an irreducible polynomial $f(x) = \sum _{i=0}^{n-1}a_i{x^i}/{i!} + {x^n}/{n!}$ over the field $\mathbb Q$ of rationals. We prove that p divides the common index divisor of K if and only if $r>p$. In particular, if $r>p$, then K is always nonmonogenic. As an application, we show that if $n \geq 3$ is an odd integer such that $n-1\neq 2^s$ for $s\in {\mathbb Z}$ and K is a number field generated by a root of a truncated exponential Taylor polynomial of degree n, then K is always nonmonogenic.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Dedicated to Professor Sudesh K. Khanduja on her 74th birthday

The author is thankful to the Indian Institute of Technology, Madras for NFIG grant RF/22-23/1035/MA/NFIG/009034.

References

Ahmad, S., Nakahara, T. and Hameed, A., ‘On certain pure sextic fields related to a problem of Hasse’, Internat. J. Algebra Comput. 26(3) (2016), 577583.CrossRefGoogle Scholar
Ahmad, S., Nakahara, T. and Husnine, S. M., ‘Power integral basis for certain pure sextic fields’, Int. J. Number Theory 10(8) (2014), 22572265.CrossRefGoogle Scholar
Borevich, Z. I. and Shafarevich, I. R., Number Theory (Academic Press, New York, 1966).Google Scholar
Cohen, S. D., Movahhedi, A. and Salinier, A., ‘Factorization over local fields and the irreducibility of generalized difference polynomials’, Mathematika 47 (2000), 173196.CrossRefGoogle Scholar
Coleman, R. F., ‘On the Galois groups of the exponential Taylor polynomials’, Enseign. Math. 33 (1987), 183189.Google Scholar
Gaál, I., ‘An experiment on the monogenity of a family of trinomials’, JP J. Algebra Number Theory Appl. 51(1) (2021), 97111.Google Scholar
Gaál, I., ‘Monogenity and power integral bases: recent developments’, Axioms 13 (2024), Article no. 429.CrossRefGoogle Scholar
Gaál, I., Pethö, A. and Pohst, M., ‘On the indices of biquadratic number fields having Galois group ${V}_4$ ’, Arch. Math. 57 (1991), 357361.CrossRefGoogle Scholar
Gaál, I. and Remete, L., ‘Power integral bases and monogenity of pure fields’, J. Number Theory 173 (2017), 129146.CrossRefGoogle Scholar
Jakhar, A. and Kaur, S., ‘A note on non-monogenity of number fields arising from sextic trinomials’, Quaest. Math. 46 (2023), 833840.CrossRefGoogle Scholar
Jindal, A. and Khanduja, S. K., ‘An extension of Schur’s irreducibility result’, Preprint, 2023, arXiv:2305.04781.Google Scholar
Khanduja, S. K., A Textbook of Algebraic Number Theory, UNITEXT Series, 135 (Springer, Singapore, 2022).CrossRefGoogle Scholar
Khanduja, S. K. and Kumar, S., ‘On prolongations of valuations via Newton polygons and liftings of polynomials’, J. Pure Appl. Algebra 216 (2012), 26482656.CrossRefGoogle Scholar
Nakahara, T., ‘On the indices and integral bases of non-cyclic but abelian biquadratic fields’, Arch. Math. 41 (1983), 504508 CrossRefGoogle Scholar
Narkiewicz, W., Elementary and Analytic Theory of Algebraic Numbers, 3rd edn, Springer Monographs in Mathematics (Springer-Verlag, Berlin, 2004).CrossRefGoogle Scholar
Schur, I., ‘Einige sätze über primzahlen mit anwendungen auf irreduzibilitätsfragen I’, Sitzungsber. Preussischen Akad. Wiss. Phys.-Math. Kl. 14 (1929), 125136.Google Scholar