Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T23:16:55.307Z Has data issue: false hasContentIssue false

NEW GENERALISATIONS OF VAN HAMME’S (G.2) SUPERCONGRUENCE

Published online by Cambridge University Press:  18 May 2022

NA TANG*
Affiliation:
School of Mathematics and Statistics, Huaiyin Normal University, Huai’an 223300, Jiangsu, PR China
*

Abstract

Swisher [‘On the supercongruence conjectures of van Hamme’, Res. Math. Sci. 2 (2015), Article no. 18] and He [‘Supercongruences on truncated hypergeometric series’, Results Math. 72 (2017), 303–317] independently proved that Van Hamme’s (G.2) supercongruence holds modulo $p^4$ for any prime $p\equiv 1\pmod {4}$ . Swisher also obtained an extension of Van Hamme’s (G.2) supercongruence for $p\equiv 3 \pmod 4$ and $p>3$ . In this note, we give new one-parameter generalisations of Van Hamme’s (G.2) supercongruence modulo $p^3$ for any odd prime p. Our proof uses the method of ‘creative microscoping’ introduced by Guo and Zudilin [‘A q-microscope for supercongruences’, Adv. Math. 346 (2019), 329–358].

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berndt, B. C. and Rankin, R. A., Ramanujan, Letters and Commentary, History of Mathematics, 9 (American Mathematical Society, Providence, RI, 1995).10.1090/hmath/009CrossRefGoogle Scholar
Gasper, G. and Rahman, M., Basic Hypergeometric Series, 2nd edn, Encyclopedia of Mathematics and Its Applications, 96 (Cambridge University Press, Cambridge, 2004).10.1017/CBO9780511526251CrossRefGoogle Scholar
Guo, V. J. W., ‘A new extension of the (A.2) supercongruence of Van Hamme’, Results Math. 77 (2022), Article no. 96.CrossRefGoogle Scholar
Guo, V. J. W. and Schlosser, M. J., ‘A family of $q$ -hypergeometric congruences modulo the fourth power of a cyclotomic polynomial’, Israel J. Math. 240 (2020), 821835.CrossRefGoogle Scholar
Guo, V. J. W. and Schlosser, M. J., ‘A new family of $q$ -supercongruences modulo the fourth power of a cyclotomic polynomial’, Results Math. 75 (2020), Article no. 155.Google ScholarPubMed
Guo, V. J. W. and Zudilin, W., ‘A $q$ -microscope for supercongruences’, Adv. Math. 346 (2019), 329358.CrossRefGoogle Scholar
Hardy, G. H., ‘A chapter from Ramanujan’s note-book’, Math. Proc. Cambridge Philos. Soc. 21(2) (1923), 492503.Google Scholar
He, B., ‘Supercongruences on truncated hypergeometric series’, Results Math. 72 (2017), 303317.10.1007/s00025-016-0635-7CrossRefGoogle Scholar
Liu, Y. and Wang, X., ‘ $q$ -Analogues of the (G.2) supercongruence of Van Hamme’, Rocky Mountain J. Math. 51 (2021), 13291340.10.1216/rmj.2021.51.1329CrossRefGoogle Scholar
Morita, Y., ‘A $p$ -adic supercongruence of the $\varGamma$ function’, J. Fac. Sci. Univ. Tokyo 22 (1975), 255266.Google Scholar
Swisher, H., ‘On the supercongruence conjectures of van Hamme’, Res. Math. Sci. 2 (2015), Article no. 18.10.1186/s40687-015-0037-6CrossRefGoogle Scholar
Van Hamme, L., ‘Some conjectures concerning partial sums of generalized hypergeometric series’, in $p$ -Adic Functional Analysis, Nijmegen, 1996, Lecture Notes in Pure and Applied Mathematics, 192 (eds. W. H. Schikhof, C. Perez-Garcia and J. Kakol) (Dekker, New York, 1997), 223236.Google Scholar